分析 根據(jù)題意,討論a=0與a<0、a>0時(shí)對(duì)應(yīng)不等式解集的情況,從而寫出不等式的解集.
解答 解:①a=0時(shí),不等式化為2x≤0,解得x≤0;(2分)
②a<0時(shí),△=4(a-1)2-4a2=4(1-2a)>0,
不等式對(duì)應(yīng)方程的兩個(gè)實(shí)數(shù)根為${x_1}=\frac{{a-1-\sqrt{1-2a}}}{a}$,
${x_2}=\frac{{a-1+\sqrt{1-2a}}}{a}$,則x1>x2,
所以x≤x2或x≥x1;(4分)
③a>0時(shí),
若$a=\frac{1}{2}$,則△=0,所以x=-1;(6分)
若$a>\frac{1}{2}$,則△<0,不等式無解;(8分)
若$0<a<\frac{1}{2}$,則△>0且x1<x2,所以x1≤x≤x2;(10分)
綜上:$a>\frac{1}{2}$時(shí)不等式解集是∅;
$a=\frac{1}{2}$時(shí)不等式解集是{-1};
$0<a<\frac{1}{2}$時(shí)不等式解集是$[{\frac{{a-1-\sqrt{1-2a}}}{a},\frac{{a-1+\sqrt{1-2a}}}{a}}]$;
a=0時(shí)不等式解集是(-∞,0];
a<0時(shí)不等式解集是$({-∞,\frac{{a-1+\sqrt{1-2a}}}{a}}]∪[{\frac{{a-1-\sqrt{1-2a}}}{a},+∞})$.(12分)
點(diǎn)評(píng) 本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=3x+4 | B. | f(x)=4x+3 | C. | f(x)=2x+5 | D. | f(x)=5x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若l∥α,α∩β=m,則l∥m | B. | 若l⊥α,m⊥α,則l∥m | ||
C. | 若l∥α,m∥α,則l∥m | D. | 若l∥α,m⊥l,則m⊥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com