已知函數(shù)
(1)當時,試討論函數(shù)的單調(diào)性;
(2)證明:對任意的 ,有.

(1)①時,在(0,1)是增函數(shù),在是減函數(shù);
時,在(0,1),是增函數(shù),在是減函數(shù);
時,是增函數(shù).
(2)見解析.

解析試題分析:(1)求導數(shù)得到,而后根據(jù)兩個駐點的大小比較,分以下三種情況討論.
時,在(0,1)是增函數(shù),在是減函數(shù);
時,在(0,1),是增函數(shù),在是減函數(shù);
時,是增函數(shù).
(2)注意到時,是增函數(shù)
時,有.從而得到:對任意的,有
通過構(gòu)造,并放縮得到
利用裂項相消法求和,證得不等式。涉及數(shù)列問題,往往通過“放縮、求和”轉(zhuǎn)化得到求證不等式.
試題解析:(1)      1分
時,在(0,1)是增函數(shù),在是減函數(shù);        3分
時,在(0,1),是增函數(shù),在是減函數(shù);      5分
時,是增函數(shù).      6分
(2)由(1)知時,是增函數(shù)
時,.
對任意的,有
                  8分
                  10分
所以
                     12分
考點:應用導數(shù)研究函數(shù)的單調(diào)性,應用導數(shù)證明不等式,“裂項相消法”求和.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),
(1)記的導函數(shù),若不等式 在上有解,求實數(shù)的取值范圍;
(2)若,對任意的,不等式恒成立,求m(m∈Z,m1)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)上的極值;
(2)證明:當時,;
(3)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)求的最大值;
(2)若對,總存在使得成立,求的取值范圍;
(3)證明不等式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當時,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,總成立,求實數(shù)的取值范圍;
(Ⅲ)設函數(shù),,過點作函數(shù)圖象的所有切線,令各切點得橫坐標構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的導函數(shù)是二次函數(shù),當時,有極值,且極大值為2,.
(1)求函數(shù)的解析式;
(2)有兩個零點,求實數(shù)的取值范圍;
(3)設函數(shù),若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。

查看答案和解析>>

同步練習冊答案