已知函數(shù),.
(1)求的最大值;
(2)若對(duì),總存在使得成立,求的取值范圍;
(3)證明不等式:.

(1)0;(2);(3)證明過(guò)程詳見(jiàn)解析.

解析試題分析:本題主要考查導(dǎo)數(shù)的應(yīng)用、不等式、數(shù)列等基礎(chǔ)知識(shí),考查思維能力、創(chuàng)新意識(shí),考查分類討論思想、轉(zhuǎn)化思想.第一問(wèn),是導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間求函數(shù)最值;第二問(wèn),雖然是恒成立問(wèn)題,但經(jīng)過(guò)分析可以轉(zhuǎn)化成求,通過(guò)討論確定每段區(qū)間上函數(shù)的單調(diào)性和最值;第三問(wèn),先通過(guò)觀察湊出所要證明的表達(dá)式的形式,再利用等比數(shù)列的前n項(xiàng)和公式求和,最后通過(guò)放縮法得到結(jié)論.
試題解析: (1)∵ ()
  ∴當(dāng)時(shí),時(shí) 
  ∴的最大值為0
(2),使得成立,等價(jià)于
由(1)知,當(dāng)時(shí),時(shí)恒為正,滿足題意.
當(dāng)時(shí),,令解得
上單調(diào)遞增,在上單調(diào)遞減,
時(shí),,∴ ∴ ∴
時(shí),,
,為正,在為負(fù),
,
當(dāng)時(shí)不合題意,
綜上的取值范圍為 .
(3)由(1)知  ()
  ∴   ∴

.
考點(diǎn):1.利用導(dǎo)數(shù)求最值;2.恒成立問(wèn)題;3.等比數(shù)列的前n項(xiàng)和公式;4.放縮法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)沒(méi)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中.
(1)若處取得極值,求常數(shù)的值;
(2)設(shè)集合,,若元素中有唯一的整數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的極值點(diǎn);
(2)若直線過(guò)點(diǎn),并且與曲線相切,求直線的方程;
(3)設(shè)函數(shù),其中,求函數(shù)上的最小值(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)當(dāng)時(shí),若直線與曲線上有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
⑴求證函數(shù)上的單調(diào)遞增;
⑵函數(shù)有三個(gè)零點(diǎn),求的值;
⑶對(duì)恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),試討論函數(shù)的單調(diào)性;
(2)證明:對(duì)任意的 ,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2-mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),求函數(shù)f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若對(duì)任意,使得恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)證明:對(duì),不等式成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案