【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,斜率為1的直線(xiàn)與橢圓交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)過(guò)點(diǎn)且與直線(xiàn)平行的直線(xiàn)與橢圓交于,兩點(diǎn),若點(diǎn)滿(mǎn)足,且與橢圓的另一個(gè)交點(diǎn)為,求的值.

【答案】1 2

【解析】

(1)由題意知是以為斜邊的等腰直角三角形,從而求得B點(diǎn)坐標(biāo),代入橢圓方程求出 ,即可得解;(2)設(shè)點(diǎn),,,直線(xiàn)的方程與橢圓方程聯(lián)立求出,,利用計(jì)算出點(diǎn)Q的坐標(biāo), 因?yàn)辄c(diǎn)在橢圓上,所以,整理得,因?yàn)?/span>, ,方程解得,即.

解:(1)因?yàn)橹本(xiàn)的斜率為1,且,

所以是以為斜邊的等腰直角三角形,

從而有,

代人橢圓的方程,得,解得,

所以橢圓的標(biāo)準(zhǔn)方程為.

2)由(1)得,所以直線(xiàn)的方程為.

設(shè)點(diǎn),,

代入,得

所以,,

所以.

因?yàn)?/span>,所以,所以.

設(shè),則,

所以

因?yàn)辄c(diǎn)在橢圓上,所以,

所以

整理得,.

由上得,且可知,,

所以,整理得,

解得(舍去),即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開(kāi)”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了人,他們年齡的頻數(shù)分布及支持生育二胎人數(shù)如下表:

年齡

頻數(shù)

支持“生二胎”

1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問(wèn)是否有的把握認(rèn)為以歲為分界點(diǎn)對(duì)“生育二胎放開(kāi)”政策的支持度有差異;

年齡不低于歲的人數(shù)

年齡低于歲的人數(shù)

合計(jì)

支持

不支持

合計(jì)

2)若對(duì)年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開(kāi)”的概率是多少?

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下圖是四面體及其三視圖,的中點(diǎn),的中點(diǎn).

1)求四面體的體積;

2)求與平面所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)對(duì)于任意,,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)已進(jìn)入新時(shí)代中國(guó)特色社會(huì)主義時(shí)期,人民生活水平不斷提高.某市隨機(jī)統(tǒng)計(jì)了城區(qū)若干戶(hù)市民十月人均生活支出比九月人均生活支出增加量(記為P元)的情況,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)制成如圖頻率分布直方圖.

1)根據(jù)頻率分布直方圖估算P的平均值;

2)若該市城區(qū)有4戶(hù)市民十月人均生活支出比九月人均生活支出分別增加了42元,50元,52元,60元,從這4戶(hù)中隨機(jī)抽取2戶(hù),求這2戶(hù)P值的和超過(guò)100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,定義,

(1),是否存在,使得?請(qǐng)說(shuō)明理由;

(2) , ,求數(shù)列的通項(xiàng)公式;

(3) ,求證:“為等差數(shù)列”的充要條件是“的前4項(xiàng)為等差數(shù)列為等差數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面為菱形, 平面,,E,F分別是的中點(diǎn).

1)求證:;

2)若直線(xiàn)與平面所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“團(tuán)購(gòu)”已經(jīng)滲透到我們每個(gè)人的生活,這離不開(kāi)快遞行業(yè)的發(fā)展,下表是2013-2017年全國(guó)快遞業(yè)務(wù)量(x億件:精確到0.1)及其增長(zhǎng)速度(y%)的數(shù)據(jù)

1)試計(jì)算2012年的快遞業(yè)務(wù)量;

2)分別將2013年,2014年,…,2017年記成年的序號(hào)t1,23,4,5;現(xiàn)已知yt具有線(xiàn)性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線(xiàn)方程;

3)根據(jù)(2)問(wèn)中所建立的回歸直線(xiàn)方程,估算2019年的快遞業(yè)務(wù)量

附:回歸直線(xiàn)的斜率和截距地最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中ab,c成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說(shuō)明:數(shù)學(xué)滿(mǎn)分150分,物理滿(mǎn)分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;

2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);

3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從數(shù)學(xué)成績(jī)?yōu)椤皟?yōu)”的同學(xué)中隨機(jī)抽取2人,求兩人恰好均為物理成績(jī)“優(yōu)”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案