【題目】有5個(gè)男生和3個(gè)女生,從中選出5人擔(dān)任5門不同學(xué)科的科代表,求分別符合下列條件的選法數(shù).
(1)某女生一定擔(dān)任語(yǔ)文科代表;
(2)某男生必須包括在內(nèi),但不擔(dān)任語(yǔ)文科代表;
(3)某女生一定要擔(dān)任語(yǔ)文科代表,某男生必須擔(dān)任科代表,但不擔(dān)任數(shù)學(xué)科代表.
【答案】(1)840種(2)3360種(3)360種
【解析】
(1)女生一定要擔(dān)任語(yǔ)文科代表,除去該女生后先取后排即可;
(2)先取后排,但先安排該男生;
(3)先從除去該男生該女生的6人中選3人有種,再安排該男生有種,其余3人全排即可.
(1)除去一定擔(dān)任語(yǔ)文科代表的女生后,先選后排,共有不同選法(種).
(2)先選后排,但先安排不擔(dān)任語(yǔ)文科代表的該男生,所以共有不同選法(種).
(3)先從除去必須擔(dān)任科代表,但不擔(dān)任數(shù)學(xué)科代表的該男生和一定要擔(dān)任語(yǔ)文科代表的該女生的6人中選3人有種,再安排必須擔(dān)任科代表,但不擔(dān)任數(shù)學(xué)科代表的該男生有種,其余3人全排列有種,所以共有不同選法(種).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)回答“用數(shù)學(xué)歸納法的證明(n∈N*)”的過(guò)程如下:
證明:①當(dāng)n=1時(shí),顯然命題是正確的.②假設(shè)當(dāng)n=k(k≥1,k∈N*)時(shí),有,那么當(dāng)n=k+1時(shí),,所以當(dāng)n=k+1時(shí)命題是正確的,由①②可知對(duì)于n∈N*,命題都是正確的,以上證法是錯(cuò)誤的,錯(cuò)誤在于( )
A.從k到k+1的推理過(guò)程沒有使用歸納假設(shè)
B.假設(shè)的寫法不正確
C.從k到k+1的推理不嚴(yán)密
D.當(dāng)n=1時(shí),驗(yàn)證過(guò)程不具體
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將m位性別相同的客人,按如下方法安排入住這n個(gè)房間:首先,安排1位客人和余下的客人的入住房間;然后,從余下的客人中安排2位客人和再次余下的客人的入住房間;依此類推,第幾號(hào)房就安排幾位客人和余下的客人的入住.這樣,最后一間房間正好安排最后余下的n位客人.試求客人的數(shù)和客房的房間數(shù),以及每間客房入住客人的數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長(zhǎng)的棱的棱長(zhǎng)為( )
A. 3 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別是,點(diǎn)在橢圓上, 是等邊三角形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)在橢圓上,線段與線段交于點(diǎn),若與的面積之比為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)過(guò)的直線分別交橢圓于和,且,問(wèn)是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一段“三段論”,其推理是這樣的:對(duì)于可導(dǎo)函數(shù),若,則是函數(shù)的極值點(diǎn),因?yàn)楹瘮?shù)滿足,所以是函數(shù)的極值點(diǎn)”,結(jié)論以上推理
A. 大前提錯(cuò)誤B. 小前提錯(cuò)誤C. 推理形式錯(cuò)誤D. 沒有錯(cuò)誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰梯形中,,,,是的中點(diǎn),將梯形繞旋轉(zhuǎn),得到梯形(如圖).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c,若對(duì)任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,則b的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com