【題目】在等腰梯形中,,,,是的中點,將梯形繞旋轉(zhuǎn),得到梯形(如圖).
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)推導(dǎo)出BC∥平面ADD',BC'∥平面ADD',從而平面BCC'∥平面ADD',由此能證明NC'∥平面ADD'.
(2)以A為原點,AB為x軸,AC為y軸,AC′為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣C'N﹣C的余弦值.
(1)證明:∵BC∥AD,∴BC∥平面ADD',
同理BC'∥平面ADD',
又BC∩BC'=B,∴平面BCC'∥平面ADD',
∵NC'平面BCC',∴NC'∥平面ADD'.
(2)解:,是的中點,,又 四邊形是平行四邊形,,又
,,四邊形是菱形,,
,即,又平面平面,平面平面 ,平面
平面, 平面.
如圖建立空間直角坐標(biāo)系,
設(shè),則,,,
,,,設(shè)平面的法向量為.
則即
取,則,,
平面,平面 平面,又,平面平面,平面,與交于點,則為的中點,,平面的法向量
.,
由圖形可知二面角為鈍角,所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)若展開式中第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項
的系數(shù);
(2)若展開式前三項的二項式系數(shù)和等于79,求展開式中系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有5個男生和3個女生,從中選出5人擔(dān)任5門不同學(xué)科的科代表,求分別符合下列條件的選法數(shù).
(1)某女生一定擔(dān)任語文科代表;
(2)某男生必須包括在內(nèi),但不擔(dān)任語文科代表;
(3)某女生一定要擔(dān)任語文科代表,某男生必須擔(dān)任科代表,但不擔(dān)任數(shù)學(xué)科代表.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游戲廠商對新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:
①3小時以內(nèi)(含3小時)為健康時間,玩家在這段時間內(nèi)獲得的累積經(jīng)驗值單位:與游玩時間小時)滿足關(guān)系式:;
②3到5小時(含5小時)為疲勞時間,玩家在這段時間內(nèi)獲得的經(jīng)驗值為即累積經(jīng)驗值不變);
③超過5小時為不健康時間,累積經(jīng)驗值開始損失,損失的經(jīng)驗值與不健康時間成正比例關(guān)系,比例系數(shù)為50.
⑴當(dāng)時,寫出累積經(jīng)驗值E與游玩時間t的函數(shù)關(guān)系式,并求出游玩6小時的累積經(jīng)驗值;
⑵該游戲廠商把累積經(jīng)驗值E與游玩時間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某服裝廠每天的固定成本是30000元,每天最大規(guī)模的生產(chǎn)量是件.每生產(chǎn)一件服裝,成本增加100元,生產(chǎn)件服裝的收入函數(shù)是,記,分別為每天生產(chǎn)件服裝的利潤和平均利潤().
(1)當(dāng)時,每天生產(chǎn)量為多少時,利潤有最大值;
(2)每天生產(chǎn)量為多少時,平均利潤有最大值,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】物聯(lián)網(wǎng)興起、發(fā)展、完善極大的方便了市民生活需求.某市統(tǒng)計局隨機地調(diào)查了該市某社區(qū)的100名市民網(wǎng)上購菜狀況,其數(shù)據(jù)如下:
每周網(wǎng)上買菜次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 | 總計 |
男 | 10 | 8 | 7 | 3 | 2 | 15 | 45 |
女 | 5 | 4 | 6 | 4 | 6 | 30 | 55 |
總計 | 15 | 12 | 13 | 7 | 8 | 45 | 100 |
(1)把每周網(wǎng)上買菜次數(shù)超過3次的用戶稱為“網(wǎng)上買菜熱愛者”,能否在犯錯誤概率不超過0.005的前提下,認(rèn)為是否為“網(wǎng)上買菜熱愛者”與性別有關(guān)?
(2)把每周使用移動支付6次及6次以上的用戶稱為“網(wǎng)上買菜達(dá)人”,視頻率為概率,在我市所有“網(wǎng)上買菜達(dá)人”中,隨機抽取4名用戶求既有男“網(wǎng)上買菜達(dá)人”又有女“網(wǎng)上買菜達(dá)人”的概率.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點.給出下列命題:
①存在點,使得//平面;
②對于任意的點,平面平面;
③存在點,使得平面;
④對于任意的點,四棱錐的體積均不變.
其中正確命題的序號是______.(寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊長分別為a、b、c,且滿足.
(1)是否存在邊長均為整數(shù)的△ABC?若存在,求出三邊長;若不存在,說明理由.
(2)若,,,求出△ABC周長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知ω>0,0<φ<π,直線和是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對稱軸,若將函數(shù)f(x)圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,則得到的圖象的函數(shù)解析式是( )
A.B.
C.y=2cos2xD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com