15.已知cos($\frac{π}{4}$-α)=$\frac{3}{5}$,則sin($\frac{3π}{4}$-α)=$\frac{3}{5}$.

分析 由已知利用誘導(dǎo)公式化簡所求即可計算得解.

解答 解:∵cos($\frac{π}{4}$-α)=$\frac{3}{5}$,
∴sin($\frac{3π}{4}$-α)=cos[$\frac{π}{2}$-($\frac{3π}{4}$-α)]=cos(α-$\frac{π}{4}$)=cos($\frac{π}{4}$-α)=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點評 本題主要考查了誘導(dǎo)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列求導(dǎo)運算正確的是( 。
A.$(x+\frac{1}{x})'=1+\frac{1}{x^2}$B.$({log_2}x)'=\frac{1}{xln2}$C.(2x)'=2xlog2eD.(xcosx)'=-sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.7名旅客分別從3個不同的景區(qū)中選擇一處游覽,不同選法種數(shù)是( 。
A.73B.37C.$A_7^3$D.$C_7^3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知非零向量$\overrightarrow m$,$\overrightarrow n$滿足3|$\overrightarrow m|=2|\overrightarrow n|$,<$\overrightarrow m,\overrightarrow n>={60°}$,若<$\overrightarrow m,\overrightarrow n>={60°}$,若$\overrightarrow n⊥(t\overrightarrow m+\overrightarrow n)$,則實數(shù)t的值為( 。
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)與雙曲線$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{{n}^{2}}$=1(n>0)有相同的焦點,則m+n的取值范圍是( 。
A.(0,6]B.[3,6]C.(3$\sqrt{2}$,6]D.[6,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y=\sqrt{3}sin2x+2{cos^2}x-1$的值域是( 。
A.[-1,2]B.[-2,2]C.[-1,3]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b∈(0,e),且a<b,則下列式子中正確的是(  )
A.alnb<blnaB.alnb>blnaC.alna>blnbD.alna<blnb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.$f(x)=1o{g_{\frac{1}{2}}}(sinxcosx+{cos^2}x)$的單調(diào)遞減區(qū)間為[kπ-$\frac{π}{4}$,kπ+$\frac{π}{8}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,如果有性質(zhì)acosA=bcosB,這個三角形的形狀是( 。
A.等邊三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案