設(shè)曲線定義為到點(diǎn)距離之和為4的動(dòng)點(diǎn)的軌跡.若將曲線繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn),則此時(shí)曲線的方程為_____________.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線C定義為到點(diǎn)(-1,-1)和(1,1)距離之和為4的動(dòng)點(diǎn)的軌跡.若將曲線C繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,則此時(shí)曲線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)曲線C定義為到點(diǎn)(-1,-1)和(1,1)距離之和為4的動(dòng)點(diǎn)的軌跡.若將曲線C繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,則此時(shí)曲線C的方程為 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市閘北區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)曲線C定義為到點(diǎn)(-1,-1)和(1,1)距離之和為4的動(dòng)點(diǎn)的軌跡.若將曲線C繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,則此時(shí)曲線C的方程為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市閘北區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)曲線C定義為到點(diǎn)(-1,-1)和(1,1)距離之和為4的動(dòng)點(diǎn)的軌跡.若將曲線C繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,則此時(shí)曲線C的方程為    

查看答案和解析>>

同步練習(xí)冊(cè)答案