【題目】如圖,在三棱錐中,平面為棱上的一點(diǎn),且平面.

1)證明:;

2)設(shè).與平面所成的角為.求二面角的大小.

【答案】1)見解析(2.

【解析】

1)根據(jù)線面垂直性質(zhì),以及線面垂直的判定定理,先得到平面,進(jìn)而可得;

2)先由題意,得到,求得,以為坐標(biāo)原點(diǎn),方向?yàn)?/span>軸正方向,方向?yàn)?/span>軸正方向,建立空間直角坐標(biāo)系,求出兩平面的法向量,根據(jù)向量夾角公式,即可求出結(jié)果.

1)證明:因?yàn)?/span>平面,平面,

所以.

因?yàn)?/span>平面,平面,

所以.

因?yàn)?/span>,所以平面

因?yàn)?/span>平面,所以.

2)解:因?yàn)?/span>平面即為與平面所成的角,

所以,所以,

為坐標(biāo)原點(diǎn),方向?yàn)?/span>軸正方向,方向?yàn)?/span>軸正方向,建立空間直角坐標(biāo)系

設(shè)平面的一個(gè)法向量為,

平面的一個(gè)法向量為

,

,

可得

所以

由圖知,二面角的平面角為銳角,所以二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,底面是正方形,且

1)求證 ;

2)若動(dòng)點(diǎn)在棱上,試確定點(diǎn)的位置,使得直線與平面所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.

1)若,,則在第一輪游戲他們獲優(yōu)秀小組的概率;

2)若則游戲中小明小亮小組要想獲得優(yōu)秀小組次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理指出:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等,例如在計(jì)算球的體積時(shí),構(gòu)造一個(gè)底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個(gè)平行于底面的平面去截它們時(shí),可證得所截得的兩個(gè)截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運(yùn)用祖暅原理可求得其體積等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】地球的公轉(zhuǎn)軌道可以看作是以太陽為一個(gè)焦點(diǎn)的橢圓,根據(jù)開普勒行星運(yùn)動(dòng)第二定律,可知太陽和地球的連線在相等的時(shí)間內(nèi)掃過相等的面積,某同學(xué)結(jié)合物理和地理知識(shí)得到以下結(jié)論:①地球到太陽的距離取得最小值和最大值時(shí),地球分別位于圖中點(diǎn)和點(diǎn);②已知地球公轉(zhuǎn)軌道的長(zhǎng)半軸長(zhǎng)約為千米,短半軸長(zhǎng)約為千米,則該橢圓的離心率約為.因此該橢圓近似于圓形:③已知我國(guó)每逢春分(日前后)和秋分(日前后),地球會(huì)分別運(yùn)行至圖中點(diǎn)和點(diǎn),則由此可知我國(guó)每年的夏半年(春分至秋分)比冬半年(當(dāng)年秋分至次年春分)要少幾天.以上結(jié)論正確的是(

A.B.①②C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年,新型冠狀病毒引發(fā)的疫情牽動(dòng)著億萬人的心,八方馳援戰(zhàn)疫情,眾志成城克時(shí)難,社會(huì)各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫(yī)院派出3名醫(yī)生,2名護(hù)士支援湖北,現(xiàn)從這5人中任選2人定點(diǎn)支援湖北某醫(yī)院,則恰有1名醫(yī)生和1名護(hù)士被選中的概率為(

A.0.7B.0.4C.0.6D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會(huì)經(jīng)濟(jì)高速發(fā)展,人民的生活水平越來越高,部分學(xué)校安裝了中央空調(diào),某校數(shù)學(xué)建模隊(duì)調(diào)查了某品牌中央空調(diào),得到該設(shè)備使用年限x(單位:年)和維修總費(fèi)用y(單位:萬元)的統(tǒng)計(jì)表如下:(每年年底維修保養(yǎng))

使用年限x(單位:年)

2

3

4

5

6

維修總費(fèi)用y(單位:萬元)

1

3

4

由上表可得線性回歸方程,則根據(jù)此模型預(yù)報(bào)該品牌中央空調(diào)第8年年底的維修費(fèi)用約為(

A.萬元B.萬元C.萬元D.萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的左右焦點(diǎn)分別為F1,F2點(diǎn).M為橢圓上的一動(dòng)點(diǎn),△MF1F2面積的最大值為4.過點(diǎn)F2的直線l被橢圓截得的線段為PQ,當(dāng)lx軸時(shí),.

1)求橢圓C的方程;

2)過點(diǎn)F1作與x軸不重合的直線l,l與橢圓交于A,B兩點(diǎn),點(diǎn)A在直線上的投影N與點(diǎn)B的連線交x軸于D點(diǎn),D點(diǎn)的橫坐標(biāo)x0是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

求橢圓的標(biāo)準(zhǔn)方程;

已知?jiǎng)又本過點(diǎn)且與橢圓交于兩點(diǎn).試問軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案