若y=-x3+ax在(-1,1)內(nèi)單調(diào)遞減,則a的取值范圍為( 。
A、(-∞,0]
B、(-∞,3)
C、(3,+∞)
D、[3,+∞)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)遞減,等價(jià)為f′(x)≤0在(-1,1)恒成立,利用參數(shù)分離法即可得到結(jié)論.
解答: 解:∵y=-x3+ax在(-1,1)內(nèi)單調(diào)遞減,
∴f′(x)≤0在(-1,1)恒成立,
∵f′(x)=-3x2+a≤0,
即a≤3x2在(-1,1)恒成立,
∵0≤3x2<3,
∴a≤0,
故選:A.
點(diǎn)評:本題主要考查函數(shù)單調(diào)性的應(yīng)用,利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又是在定義域上是減函數(shù)的為( 。
A、y=x+1
B、y=
1
x
C、y=-x3
D、y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件:x-2≤0,y-1≤0,-x-2y+2≤0,則z=-x-y的取值范圍是( 。
A、[-3,-1]
B、[-2,-1]
C、[-3,-2]
D、[-3,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對下列命題的否定錯(cuò)誤的是( 。
A、p:2既是偶數(shù)又是素?cái)?shù);¬p:2不是偶數(shù)或不是素?cái)?shù)
B、p:至少有一個(gè)整數(shù),它既不是合數(shù),也不是素?cái)?shù);¬p:每一個(gè)整數(shù),它是合數(shù)或素?cái)?shù)
C、p:?x∈N,x3>x2;¬p:?x∈N,x3≤x2
D、p:負(fù)數(shù)的平方是正數(shù);¬p:負(fù)數(shù)的平方不是正數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知D是AB邊上一點(diǎn),若
AD
=3
DB
CD
CA
CB
,則λ=(  )
A、
1
3
B、
2
3
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x2-4
x-1
≥0成立的一個(gè)必要不充分條件是( 。
A、[-2,1)U[2,+∞)
B、[-2,+∞)
C、[2,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足(
3
+3i)•z=3i,則z等于( 。
A、
3
4
+
3
4
i
B、
3
2
-
3
2
i
C、
3
4
-
3
4
i
D、
3
2
+
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P和Q是兩個(gè)集合,定義集合P-Q={x|x∈P,且x∉Q},若Q={x|1<x<2},P={x|1<x<3},那么P-Q等于(  )
A、{x|0<x<1}
B、{x|0<x≤1}
C、{x|1≤x<2}
D、{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算:tan(-
23π
6
);
(2)已知sinx=2cosx,求cos2x-2sin2x的值.

查看答案和解析>>

同步練習(xí)冊答案