20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(x-a)^2}+e,x≤2\\ \frac{x}{1nx}+a+10,x>2\end{array}$,(e是自然對數(shù)的底數(shù)),若f(2)是函數(shù)f(x)的最小值,則a的取值范圍是( 。
A.[-1,6]B.[1,4]C.[2,4]D.[2,6]

分析 x≤2時,函數(shù)的對稱軸為x=a,可確定a≥2,再利用f(e)是函數(shù)的極小值,f(e)≥f(2),即可求出a 的范圍.

解答 解:x≤2時,函數(shù)的對稱軸為x=a,∵f(2)是函數(shù)f(x)的最小值,∴a≥2.
x>2,f(x)=$\frac{x}{lnx}$+a+10,f′(x)=$\frac{lnx-1}{l{n}^{2}x}$,x∈(2,e),f′(x)<0,x∈(2,+∞),f′(x)>0,∴f(e)是函數(shù)的極小值,
∵f(2)是函數(shù)f(x)的最小值,
∴f(e)≥f(2),∴1≤a≤6,
∴1≤a≤6.
故選:D.

點評 本題考查函數(shù)的最值,考查導(dǎo)數(shù)知識的綜合運(yùn)用,確定函數(shù)的單調(diào)性是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)證明:BD1⊥平面A1C1D;
(Ⅱ)求多面體BDC1A1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知F1、F2為雙曲線的焦點,過F2垂直于實軸的直線交雙曲線于A、B兩點,BF1交y軸于點C,若AC⊥BF1,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.拋物線y2=8x的焦點到雙曲線${x^2}-\frac{y^2}{3}=1$的漸近線的距離是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合P={x∈R|x>0},Q={x∈Z|(x+1)(x-4)<0},則P∩Q=( 。
A.(0,4)B.(4,+∞)C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標(biāo)值x,得到如下的頻率分布表:
x[11,13)[13,15)[15,17)[17,19)[19,21)[21,23)
頻數(shù)2123438104
(Ⅰ)作出樣本的頻率分布直方圖,并估計該技術(shù)指標(biāo)值x的平均數(shù)和眾數(shù);
(Ⅱ)若x<13或x≥21,則該產(chǎn)品不合格.現(xiàn)從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于13的產(chǎn)品恰有一件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)左、右焦點分別為F1,F(xiàn)2,A(2,0)是橢圓的右頂點,過F2且垂直與x軸的直線交橢圓于P,Q兩點,且|PQ|=3
(1)求橢圓的方程
(2)若直線l與橢圓交于兩點M,N(M,N不同于點A),若$\overrightarrow{AM}$•$\overrightarrow{AN}$=0,求證:直線l過定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.平面內(nèi)定點財(1,0),定直線l:x=4,P為平面內(nèi)動點,作PQ丄l,垂足為Q,且$|\overrightarrow{PQ}|=2|\overrightarrow{PM}|$.
(I)求動點P的軌跡方程;
(II )過點M與坐標(biāo)軸不垂直的直線,交動點P的軌跡于點A、B,線段AB的垂直平分 線交x軸于點H,試判斷$\frac{|HM|}{|AB|}$-是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-2y-2≤0}\\{x-1≥0}\end{array}\right.$,則3x-y的最大值為6.

查看答案和解析>>

同步練習(xí)冊答案