【題目】如圖,在四棱錐中,,,,,,點為的中點.
(1)求證:平面;
(2)若平面 平面,求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】某漁業(yè)公司年初用81萬元購買一艘捕魚船,第一年各種費用為1萬元,以后每年都增加2萬元,每年捕魚收益30萬元.
問第幾年開始獲利?
若干年后,有兩種處理方案:方案一:年平均獲利最大時,以46萬元出售該漁船;
方案二:總純收入獲利最大時,以10萬元出售該漁船問:哪一種方案合算?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A,B,C的對邊分別為a、b、c,a=btanA,且B為鈍角.
(1)證明:B﹣A= ;
(2)求sinA+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為定義域上的奇函數(shù),且在上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,,且公差不為0,若,則( )
A. 45 B. 15 C. 10 D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x+2|﹣|2x﹣1|,M為不等式f(x)>0的解集.
(1)求M;
(2)求證:當x,y∈M時,|x+y+xy|<15.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有兩臺不同機器A和B生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到的產(chǎn)品,質(zhì)量等級為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
Ⅰ從等級為優(yōu)秀的樣本中隨機抽取兩件,記X為來自B機器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學期望;
Ⅱ完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認為B機器生產(chǎn)的產(chǎn)品比A機器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上含良好 | |||
合格 | |||
合計 |
已知優(yōu)秀等級產(chǎn)品的利潤為12元件,良好等級產(chǎn)品的利潤為10元件,合格等級產(chǎn)品的利潤為5元件,A機器每生產(chǎn)10萬件的成本為20萬元,B機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器你認為該工廠會仍然保留原來的兩臺機器嗎?
附:獨立性檢驗計算公式:.
臨界值表:
k |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知在四棱錐中,底面是邊長為4的正方形,是正三角形,平面平面,分別是的中點.
(1)求證:平面平面;
(2)若是線段上一點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求滿足下列條件的橢圓或雙曲線的標準方程:
(1)橢圓的焦點在軸上,焦距為4,且經(jīng)過點;
(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于,兩點,且,離心率為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com