分析 解不等式得出m的值,再利用絕對值不等式和絕對值的意義得出|x+1|-|x-m|在(0,+∞)上的范圍,從而得出a的范圍.
解答 解:∵|x-2|<|x|,
∴$\left\{\begin{array}{l}{2-x<-x}\\{x≤0}\end{array}\right.$或$\left\{\begin{array}{l}{2-x<x}\\{0<x≤2}\end{array}\right.$或$\left\{\begin{array}{l}{x-2<x}\\{x>2}\end{array}\right.$,
解得x>1,∴$\frac{m}{2}$=1,即m=2.
∵|x+1|-|x-2|≤|x+1-x+2|=3,當(dāng)且僅當(dāng)x≥2時取等號,
∴3<a+2,解得a>1;
∵x>0,∴|x+1|-|x-2|>1-2=-1,
∴a-5≤-1,解得a≤4.
綜上可得1<a≤4.
故答案為:(1,4].
點(diǎn)評 本題考查了絕對值不等式的解法,絕對值三角不等式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 44 | B. | 36 | C. | 27 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{3}$ | C. | 4 | D. | $4\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com