4.某程序框圖如圖所示,若該程序運行后輸出的值是$\frac{7}{4}$,則a=3

分析 根據(jù)流程圖可得該程序的功能是計算并輸出S的值,利用裂項相消法易得答案.

解答 解:由已知可得該程序的功能是
計算并輸出S=1+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{a(a+1)}$
=1+1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{a}$-$\frac{1}{a+1}$
=2-$\frac{1}{a+1}$;
若該程序運行后輸出的值是$\frac{7}{4}$,
則2-$\frac{1}{a+1}$=$\frac{7}{4}$,
解得a=3.
故答案為:3.

點評 本題考查了程序框圖的應(yīng)用問題,其中分析出程序的功能是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知菱形ABCD中,∠DAB=60°,AB=3,對角線AC與BD的交點為O,把菱形ABCD沿對角線BD折起,使得∠AOC=90°,則折得的幾何體的外接球的表面積為( 。
A.15πB.$\frac{15π}{2}$C.$\frac{7π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點O、N、P在三角形ABC所在平面內(nèi),且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{PA}•\overrightarrow{PB}$=$\overrightarrow{PB}•\overrightarrow{PC}$=$\overrightarrow{PC}•\overrightarrow{PA}$,則點O、N、P依次是三角形ABC的( 。
A.重心、外心、垂心B.重心、外心、內(nèi)心C.外心、重心、垂心D.外心、重心、內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),已知以坐標(biāo)原點為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(Ⅰ)把橢圓C的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)A,B分別為橢圓C上的兩點,且OA⊥OB,求$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知不等式|x-2|<|x|的解集為$({\frac{m}{2},+∞})$.若不等式a-5<|x+1|-|x-m|<a+2對x∈(0,+∞)恒成立,則實數(shù)a的取值范圍為(1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x-a|+|x-1|,a∈R.
(Ⅰ)若不等式f(x)≥2-|x-1|恒成立,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時,直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}+cosα\\ y=\frac{{\sqrt{2}}}{2}+sinα\end{array}\right.$(α為參數(shù)),且直線l與曲線C交于A,B兩點,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=ksin(kx+$\frac{π}{6}$)(k∈N*)的圖象過點(π,1).
(1)當(dāng)x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函數(shù)g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對于任意實數(shù)x,有f(x)>f′(x),且y=f(x)-2為奇函數(shù),則不等式f(x)<2ex的解集為( 。
A.(-∞,0)B.(0,+∞)C.(-∞,e2D.(e2,+∞)

查看答案和解析>>

同步練習(xí)冊答案