3.在直角坐標(biāo)系xOy中,以原點(diǎn)為O極點(diǎn),以x軸正半軸為極軸,圓C的極坐標(biāo)方程為ρ=4$\sqrt{2}cos(θ+\frac{π}{4})$.
(1)將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點(diǎn)P(2,0)作斜率為1直線l與圓C交于A,B兩點(diǎn),試求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

分析 (1)圓C的極坐標(biāo)方程為ρ=4$\sqrt{2}cos(θ+\frac{π}{4})$,展開可得:ρ2=4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$ρ(cosθ-sinθ),利用互化公式即可得出直角坐標(biāo)方程.
(2)直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),代入上述方程可得:t2+2$\sqrt{2}$t-4=0.$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$.

解答 解:(1)圓C的極坐標(biāo)方程為ρ=4$\sqrt{2}cos(θ+\frac{π}{4})$,展開可得:ρ2=4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$ρ(cosθ-sinθ),
可得直角坐標(biāo)方程:x2+y2-4x+4y=0.
(2)直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),代入上述方程可得:t2+2$\sqrt{2}$t-4=0.
t1+t2=-2$\sqrt{2}$,t1t2=-4,
則$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{8-4×(-4)}}{4}$=$\frac{\sqrt{6}}{2}$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為參數(shù)方程、參數(shù)方程化為普通方程及其應(yīng)用、直線與圓相交弦長(zhǎng)問題,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,其前n項(xiàng)和為Sn,且滿足${a_n}^2={S_{2n-1}}$,n∈N*,數(shù)列{bn}滿足${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an及數(shù)列{bn}的前n項(xiàng)和Tn;
(2)若對(duì)任意的n∈N*,不等式λTn<n+18恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n,1<m<n,使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n值;若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線f(x)=acosx與曲線g(x)=x2+bx+1在交點(diǎn)(0,x0)有公切線,則b-a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PA=$\sqrt{3}$,PA⊥面ABCD,E、F分別為BC、PA的中點(diǎn).
(1)求證:BF∥平面PDE;
(2)求二面角D-PE-A的正弦值;
(3)求點(diǎn)C到平面PDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.求A∪B,∁U(A∩B);
(2)化簡(jiǎn)求值:$\sqrt{6\frac{1}{4}}$+$\root{3}{{8}^{2}}$+0.027${\;}^{-\frac{2}{3}}$×(-$\frac{1}{3}$)-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.全集U={1,2,3,4,5,6},若M={1,4},N={2,3},則∁U(M∪N)等于(  )
A.{1,2,3,4}B.{3,4}C.{1,6}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x-exln|x|,則該函數(shù)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),f(x)在區(qū)間(0,2]上只有一個(gè)最大值1和一個(gè)最小值-1,則實(shí)數(shù)ω的取值范圍為( 。
A.[$\frac{7π}{12}$,$\frac{13π}{12}$)B.[$\frac{π}{2}$,π)C.[$\frac{π}{6}$,$\frac{π}{2}$)D.[$\frac{π}{6}$,$\frac{π}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案