已知正項等比數(shù)列{an}滿足:lna1+lna2=4,lna4+lna5=10.
(1)求數(shù)列{an}的通項公式;
(2)記Sn=lna1+lna2+…+lnan,數(shù)列{bn}滿足bn=
1
2Sn
,若存在n∈N,使不等式K<(b1+b2+…+bn)(
2
3
n 成立,求實數(shù)K的取值范圍.
考點:數(shù)列的求和,等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知得a1a2=e4a4a5=e10,由此能求出數(shù)列{an}的通項公式.
(Ⅱ)由(Ⅰ)知Sn=1+2+3+…+n=
n(n+1)
2
,bn=
1
n(n+1)
=
1
n
-
1
n+1
,由此利用裂項求和法能求出實數(shù)k的取值范圍.
解答: 解:(Ⅰ)∵正項等比數(shù)列{an}滿足:lna1+lna2=4,lna4+lna5=10,
a1a2=e4a4a5=e10,
∴q6=e6,由q>0,解得q=e,a1=e,
∴an=en
(Ⅱ)由(Ⅰ)知Sn=1+2+3+…+n=
n(n+1)
2

bn=
1
n(n+1)
=
1
n
-
1
n+1
,
∴b1+b2+…+bn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1

設(shè)cn=(b1+b2+…+bn)(
2
3
n,
cn=
n
n+1
(
2
3
)
n
cn+1-cn=
n+1
n+2
2
3
n+1-
n
n+1
2
3
n
=
-n2-2n+2
3(n+1)(n+2)
•(
2
3
)n<0
,
∴cn>cn+1
∴數(shù)列{cn}單調(diào)遞減,
(cnmax=c2=
1
3

∴k<
1
3
點評:本題考查數(shù)列通項公式的求法,考查實數(shù)的取值范圍的求法,解題時要認真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù).f(x)=
a
2
-
2x
2x+1

(1)若f(x)是奇函數(shù),求a值;
(2)利用單調(diào)性定義證明f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=-2處取得極值,并且它的圖象與直線y=-3x+3在點( 1,0 ) 處相切,
(1)求a,b,c的值;
(2)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

質(zhì)監(jiān)部門對一批產(chǎn)品進行質(zhì)檢,已知樣品中有合格品7件,次品3件,在這10件樣品中任取3件.
(Ⅰ)求抽取的3件都是合格品的概率;
(Ⅱ)記抽取的3件中次品件數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一批材料可以建成長為200m的圍墻,如果用材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的矩形(如圖),求:
①整個矩形場地ABCD的面積S用x表示出來;
②當(dāng)中間隔墻x為多少時,整個矩形場地ABCD的S最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,EA⊥平面ABCD,EF∥AB,AB=4,AE=2,EF=1,
(1)求證:BC⊥AF;
(2)若點M在線段AC上,且滿足CM=
1
4
CA,求證:EM∥平面FBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角θ(0<θ<π)的正弦線與余弦線的長度相等且符號相反,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=-x+b與5x+3y-31=0的交點在第一象限,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-6y+9=0關(guān)于直線y+1=0對稱的圓的標(biāo)準方程是
 

查看答案和解析>>

同步練習(xí)冊答案