【題目】有以下4個命題:
①若 ,則a﹣c>b﹣d; ②若a≠0,b≠0,則 ;③兩條直線平行的充要條件是它們的斜率相等; ④過點(diǎn)(x0 , y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2
其中錯誤命題的序號是 . (把你認(rèn)為錯誤的命題序號都填上)

【答案】①④
【解析】①若 ,則a>b,﹣c>﹣d則a﹣c>b﹣d;故①正確
②若a≠0,b≠0,則 ;缺少兩個式子都是正值,故②不正確.
③兩條直線平行的充要條件是它們的斜率相等,且截距不等,故③不正確,
④過點(diǎn)(x0 , y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2 . ④正確,
綜上可知①④正確,
所以答案是:①④
【考點(diǎn)精析】認(rèn)真審題,首先需要了解基本不等式(基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(1)討論f(x)的單調(diào)性;
(2)證明:當(dāng)x>1時,g(x)>0;
(3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公園游園活動中,有這樣一個游戲項(xiàng)目:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和2個黑球,這些球除顏色外完全相同.每次游戲都從這兩個箱子里各隨機(jī)地摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)

(1)求在每一次游戲中獲獎的概率;

(2)在三次游戲中,記獲獎次數(shù)為,求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若0<a<b,且a+b=1,則下列各式中最大的是(
A.﹣1
B.log2a+log2b+1
C.log2b
D.log2(a3+a2b+ab2+b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué);虬嗉壟e行活動,通常需要張貼海報(bào)進(jìn)行宣傳,現(xiàn)讓你設(shè)計(jì)一張豎向張貼的海報(bào), 要求版心面積為128 dm2 , 上、下兩邊各空2 dm,左右兩邊各空1 dm,張貼的長與寬尺
寸為( )才能使四周空白面積最小(
A.20dm,10dm
B.12dm,9dm
C.10dm,8dm
D.8dm,5dm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時10小時可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時6小時可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為(
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合P={x|x2﹣2 x≤0},m=20.3 , 則下列關(guān)系中正確的(
A.mP
B.mP
C.{m}∈P
D.{m}P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上單調(diào)遞減,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

(1)若函數(shù)是偶函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)且任意都有恒成立,求實(shí)數(shù)的取值范圍;

(3)若,求上的最小值。

查看答案和解析>>

同步練習(xí)冊答案