分析 (I)由題意長(zhǎng)軸長(zhǎng)為4求得a的值,離心率e=$\frac{1}{2}$,得出c=1,可得b,即可求橢圓C的方程;
(II)由于圓O是以F1,F(xiàn)2為直徑的圓,直線(xiàn)l:y=kx+m與⊙O相切,利用直線(xiàn)與圓相切的從要條件得到一個(gè)等式,把直線(xiàn)方程與橢圓方程聯(lián)立利用整體代換的思想,根據(jù)$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,建立k的方程求k.
解答 解:(I)由題意,長(zhǎng)軸長(zhǎng)為4,即2a=4,解得:a=2,
∵離心率e=$\frac{1}{2}$,∴c=1,
∴b2=3,
∴橢圓的方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(II)由直線(xiàn)l與圓O相切,得:$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1,∴m2=1+k2.
設(shè)A(x1,y1)B(x2,y2)
由直線(xiàn)l:y=kx+m與橢圓方程,消去y,
整理得:(3+4k2)x2+8kmx+4m2-12=0,
∴x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$,
∴x1x2+y1y2=$\frac{7{m}^{2}-12{k}^{2}-12}{3+4{k}^{2}}$,
∵m2=1+k2,
∴x1x2+y1y2=$\frac{-5-5{k}^{2}}{3+4{k}^{2}}$=-$\frac{3}{2}$,
解得:k=±$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 此題考查了橢圓的基本性質(zhì)及橢圓的標(biāo)準(zhǔn)方程,還考查了直線(xiàn)方程與橢圓方程聯(lián)立之后的整體代換設(shè)而不求,還有求解問(wèn)題時(shí)方程的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{y^2}{4}$-$\frac{x^2}{5}$=1(y≤-2) | B. | $\frac{y^2}{4}$-$\frac{x^2}{5}$=1 | C. | $\frac{x^2}{4}$-$\frac{y^2}{5}$=1(x≤-2) | D. | $\frac{x^2}{4}$-$\frac{y^2}{5}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$,$\frac{1}{π}$ | B. | 2,$\frac{1}{π}$ | C. | $\frac{1}{2}$,π | D. | 2,π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com