【題目】在全球抗擊新冠肺炎疫情期間,我國(guó)醫(yī)療物資生產(chǎn)企業(yè)加班加點(diǎn)生產(chǎn)口罩、防護(hù)服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應(yīng),在國(guó)際社會(huì)上贏得一片贊譽(yù).我國(guó)某口罩生產(chǎn)廠商在加大生產(chǎn)的同時(shí).狠抓質(zhì)量管理,不定時(shí)抽查口罩質(zhì)量,該廠質(zhì)檢人員從某日所生產(chǎn)的口罩中隨機(jī)抽取了100個(gè),將其質(zhì)量指標(biāo)值分成以下五組:,,,,,得到如下頻率分布直方圖.
(1)規(guī)定:口罩的質(zhì)量指標(biāo)值越高,說明該口罩質(zhì)量越好,其中質(zhì)量指標(biāo)值低于130的為二級(jí)口罩,質(zhì)量指標(biāo)值不低于130的為一級(jí)口罩.現(xiàn)從樣本口罩中利用分層抽樣的方法隨機(jī)抽取8個(gè)口罩,再?gòu)闹谐槿?/span>3個(gè),記其中一級(jí)口罩個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)在2020年“五一”勞動(dòng)節(jié)前,甲,乙兩人計(jì)劃同時(shí)在該型號(hào)口罩的某網(wǎng)絡(luò)購(gòu)物平臺(tái)上分別參加、兩店各一個(gè)訂單“秒殺”搶購(gòu),其中每個(gè)訂單由個(gè)該型號(hào)口罩構(gòu)成.假定甲、乙兩人在、兩店訂單“秒殺”成功的概率分別為,,記甲、乙兩人搶購(gòu)成功的訂單總數(shù)量、口罩總數(shù)量分別為,,
①求的分布列及數(shù)學(xué)期望;
②求當(dāng)的數(shù)學(xué)期望取最大值時(shí)正整數(shù)的值.
【答案】(1)見解析,(2)①見解析;②6
【解析】
(1)根據(jù)分層抽樣可得二級(jí)、一級(jí)口罩個(gè)數(shù),然后寫出的所有可得取值并計(jì)算相應(yīng)的概率,列出分布列并根據(jù)數(shù)學(xué)期望公式可得結(jié)果.
(2)①寫出寫出的所有可得取值并計(jì)算相應(yīng)的概率,列出分布列并根據(jù)數(shù)學(xué)期望公式可得結(jié)果.②根據(jù),使用換元法并構(gòu)造函數(shù),然后利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,進(jìn)一步可得取最大值的條件.
(1)按分層抽樣抽取8個(gè)口罩,則其中二級(jí)、一級(jí)口罩個(gè)數(shù)分別為6,2.故的可能取值為0,1,2.
,
,
,
的分布列為
0 | 1 | 2 | |
所以.
(2)①由題知的可能取值為0,1,2,
;
;
.
所以的分布列為
0 | 1 | 2 | |
所以
.
②因?yàn)?/span>,
所以,
令,
設(shè),
則,
因?yàn)?/span>,
所以當(dāng)時(shí),,
所以在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),,
所以在區(qū)間上單調(diào)遞減;
所以當(dāng)即時(shí)取最大值,
所以.
所以取最大值時(shí),的值為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解該校學(xué)生“停課不停學(xué)”的網(wǎng)絡(luò)學(xué)習(xí)效率,隨機(jī)抽查了高一年級(jí)100位學(xué)生的某次數(shù)學(xué)成績(jī),得到如圖所示的頻率分布直方圖:
(1)估計(jì)這100位學(xué)生的數(shù)學(xué)成績(jī)的平均值.(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)根據(jù)整個(gè)年級(jí)的數(shù)學(xué)成績(jī),可以認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)近似地服從正態(tài)分布經(jīng)計(jì)算,(1)問中樣本標(biāo)準(zhǔn)差的近似值為10.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任抽取一位學(xué)生,求他的數(shù)學(xué)成績(jī)恰在64分到94分之間的概率.
參考數(shù)據(jù):若隨機(jī)變量,則,,
(3)該年級(jí)1班的數(shù)學(xué)老師為了能每天督促學(xué)生的網(wǎng)絡(luò)學(xué)習(xí),提高學(xué)生每天的作業(yè)質(zhì)量及學(xué)習(xí)數(shù)學(xué)的積極性,特意在微信上設(shè)計(jì)了一個(gè)每日作業(yè)小程序,每當(dāng)學(xué)生提交的作業(yè)獲得優(yōu)秀時(shí),就有機(jī)會(huì)參與一次小程序中“玩游戲,得獎(jiǎng)勵(lì)積分”的活動(dòng),開學(xué)后可根據(jù)獲得積分的多少領(lǐng)取老師相應(yīng)的小獎(jiǎng)品.小程序頁面上有一列方格,共15格,剛開始有只小兔子在第1格,每點(diǎn)一下游戲的開始按鈕,小兔子就沿著方格跳一下,每次跳1格或跳2格,概率均為,依次點(diǎn)擊游戲的開始按鈕,直到小兔子跳到第14格(獎(jiǎng)勵(lì)0分)或第15格(獎(jiǎng)勵(lì)5分)時(shí),游戲結(jié)束,每天的積分自動(dòng)累加,設(shè)小兔子跳到第格的概率為,試證明是等比數(shù)列,并求的值.(獲勝的概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱錐P﹣ABCD的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為2,過點(diǎn)A作一個(gè)與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,②(),③()這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,若問題中的k存在,求出k的值;若k不存在,說明理由.已知數(shù)列為等比數(shù)列,,,數(shù)列的首項(xiàng),其前n項(xiàng)和為,______,是否存在,使得對(duì)任意,恒成立?
注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全球抗擊新冠肺炎疫情期間,我國(guó)醫(yī)療物資生產(chǎn)企業(yè)加班加點(diǎn)生產(chǎn)口罩、防護(hù)服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應(yīng),在國(guó)際社會(huì)上贏得一片贊譽(yù).我國(guó)某口罩生產(chǎn)企業(yè)在加大生產(chǎn)的同時(shí),狠抓質(zhì)量管理,不定時(shí)抽查口罩質(zhì)量,該企業(yè)質(zhì)檢人員從所生產(chǎn)的口罩中隨機(jī)抽取了100個(gè),將其質(zhì)量指標(biāo)值分成以下六組:,,,…,,得到如下頻率分布直方圖.
(1)求出直方圖中的值;
(2)利用樣本估計(jì)總體的思想,估計(jì)該企業(yè)所生產(chǎn)的口罩的質(zhì)量指標(biāo)值的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表,中位數(shù)精確到0.01);
(3)現(xiàn)規(guī)定:質(zhì)量指標(biāo)值小于70的口罩為二等品,質(zhì)量指標(biāo)值不小于70的口罩為一等品.利用分層抽樣的方法從該企業(yè)所抽取的100個(gè)口罩中抽出5個(gè)口罩,并從中再隨機(jī)抽取2個(gè)作進(jìn)一步的質(zhì)量分析,試求這2個(gè)口罩中恰好有1個(gè)口罩為一等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)是原點(diǎn)O,以x軸為對(duì)稱軸,且經(jīng)過點(diǎn)P(1,2).
(1)求拋物線C的方程;
設(shè)點(diǎn)A,B在拋物線C上,直線PA,PB分別與y軸交于點(diǎn)M,N,|PM|=|PN|.求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,直線與橢圓的另一個(gè)交點(diǎn)分別為.
(1)若點(diǎn)坐標(biāo)為,且,求橢圓的方程;
(2)設(shè),,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過點(diǎn),傾斜角為.
(1)求曲線的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)設(shè)直線與曲線交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處的切線斜率為2,試求a的值及此時(shí)的切線方程;
(2)若函數(shù)在區(qū)間(其中…為自然對(duì)數(shù)的底數(shù))上有唯一的零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com