已知函數(shù)f(x)=|1-
1
x
|,若0<a<b,且f(a)=f(b),則2a+b的最小值為
3
2
+
2
3
2
+
2
分析:由題意可得1-
1
b
=
1
a
-1,利用基本不等式即可求得2a+b的最小值.
解答:解:∵f(x)=|1-
1
x
|,若0<a<b,且f(a)=f(b),
∴1-
1
b
=
1
a
-1,即
1
a
+
1
b
=2,
∴2a+b=(2a+b)×
1
2
1
a
+
1
b
)=
1
2
(2+1+
b
a
+
2a
b
)≥
1
2
(3+2
2
)=
3
2
+
2
(當(dāng)且僅當(dāng)b=
2
a=
1+
2
2
時取“=”).
故答案為:
3
2
+
2
點(diǎn)評:本題考查帶絕對值的函數(shù),考查基本不等式的應(yīng)用,得到
1
a
+
1
b
=2是關(guān)鍵,考查分析理解與應(yīng)用的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案