已知關(guān)于x的方程x2-mx+2m-3=0的兩個(gè)實(shí)數(shù)根都大于1,求實(shí)數(shù)m的取值范圍.
考點(diǎn):一元二次方程的根的分布與系數(shù)的關(guān)系
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用方程有兩個(gè)大于1的根,根據(jù)方程根與系數(shù)的關(guān)系可以列出不等式組求得m的取值范圍即可;
解答: 解:(1)根據(jù)題意,m應(yīng)當(dāng)滿足條件
△=m2-4(2m-3)
m≥2
1-m+2m-3>0
,解得m≥6.
所以實(shí)數(shù)m的取值范圍:[6,+∞).
點(diǎn)評(píng):本題考查了根的判別式及根與系數(shù)的關(guān)系,解題的關(guān)鍵是正確的運(yùn)用判別式及韋達(dá)定理得到不等式組.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知樣本6,7,8,9,m的平均數(shù)是8,則標(biāo)準(zhǔn)差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)為一次函數(shù),若f(2x-1)+2f(3x+4)=2x+1,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=a|x-1|.
(1)若x∈R時(shí),不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)h(x)=|f(x)|+g(x)在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,DA=AB=1,BC=2,點(diǎn)P在陰影區(qū)域(含邊界)中運(yùn)動(dòng),則有
PA
BD
的取值范圍是( 。
A、[-
1
2
,1]
B、[-1,
1
2
]
C、[-1,1]
D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx-
π
6
)(ω>0)和g(x)=cos(2x+φ)(0<φ<π)的圖象的對(duì)稱(chēng)軸相同.
(1)求滿足題意的ω,φ的值;
(2)求F(x)=f(x)-g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓O1:x2+y2=1與圓O2:(x-3)2+y2=r2(r>0)內(nèi)切,則r的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
y≤x-1
x≤3
x+y≥4
,則
y
x
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z為復(fù)數(shù),z+2i和
z
2-i
均為實(shí)數(shù),其中i是虛數(shù)單位.
(Ⅰ)求復(fù)數(shù)z和|z|;
(Ⅱ)若z1=
.
z
+
1
m-1
-
7
m+2
i的對(duì)應(yīng)點(diǎn)在第四象限,求m的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案