已知{an}為等差數(shù)列,若
a9
a8
<-1且其前n項和Sn有最大值,則使得Sn>0的n的最大值為( 。
A、16B、15C、9D、8
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得可得數(shù)列的公差d<0,a8>0,a8+a9<0,可得S15>0,S16<0,從而可得使得Sn>0的n的最大值n的值.
解答: 解:若
a9
a8
<-1,則
a8+a9
a8
<0,又∵數(shù)列的前n項和Sn有最大值,
∴可得數(shù)列的公差d<0,
∴a8>0,a8+a9<0,a9<0,∴a1+a15=2a8>0,a1+a16=a8+a9<0,
故有∴S15>0,S16<0,∴使得Sn>0的n的最大值n=15,
故選:B.
點評:本題考查等差數(shù)列的性質(zhì)在求解和的最值中應用,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若A=a2+3ab,B=4ab-b2,則A、B的大小關系是(  )
A、A≤BB、A≥B
C、A<B或A>BD、A>B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,且a≠1,loga3<1,則實數(shù)a的取值范圍是( 。
A、(0,1)
B、(0,1)∪(3,+∞)
C、(3,+∞)
D、(1,2)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)在一個周期內(nèi)的圖象,M、N分別是最大、最小值點,且
OM
ON
,則A•ω的值為( 。
A、
π
6
B、
2
π
6
C、
7
π
6
D、
7
π
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中,若a2、a4是方程2x2-11x+8=0的兩根,則a3的值為( 。
A、2
B、±2
C、
2
D、±
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[0,2],則
f(2x)
x
的定義域為( 。
A、{x|0<x≤4}
B、{x|0≤x≤4}
C、{x|0<x≤1}
D、{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M=x2+y2-4x+2y,N=-5,若x≠2或y≠-1,則( 。
A、M>NB、M<N
C、M=ND、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若c=
2
,b=
6
,B=120°,則sinC等于( 。
A、
6
B、2
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了研究玉米品種對產(chǎn)量的影響,某農(nóng)科院對一塊試驗田種植的一批玉米共10000株的生長情況進行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計結(jié)果如下:
高桿矮桿合計
圓粒111930
皺粒13720
合計242650
(1)現(xiàn)采用分層抽樣的方法,從該樣本所含的圓粒玉米中取出6株玉米,再從這6株玉米中隨機選出2株,求這2株之中既有高桿玉米又有矮桿玉米的概率;
(2)根據(jù)對玉米生長情況作出的統(tǒng)計,是否能在犯錯誤的概率不超過0.050的前提下認為玉米的圓粒與玉米的高桿有關?(下面的臨界值表和公式可供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

同步練習冊答案