如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線的方程;
(2)設(shè)C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設(shè)P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關(guān))
(1)(2)(3),設(shè)
直線PA的方程,
解析試題分析:設(shè)
(1)由條件知直線由消去y,得………1分
由題意,判別式由韋達定理,
由拋物線的定義,從而所求拋物的方程為………3分
(2)設(shè)。由(1)易求得
則,點C到直線的距離
將原點O(0,0)的坐標代入直線的左邊,得
而點C與原點O們于直線的同側(cè),由線性規(guī)劃的知識知
因此……6分由(1),|AB|=4p。
由知當…8分
(3)由(2),易得設(shè)。
將代入直線PA的方程
得同理直線PB的方程為
將代入直線PA,PB的方程得
考點:直線與橢圓相交求弦長,三角型面積
點評:本題(1)中應(yīng)用焦點弦公式計算較簡單,(2)(3)對于高二期末考試難度大,不建議采用
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓方程為,左、右焦點分別是,若橢圓上的點到的距離和等于.
(Ⅰ)寫出橢圓的方程和焦點坐標;
(Ⅱ)設(shè)點是橢圓的動點,求線段中點的軌跡方程;
(Ⅲ)直線過定點,且與橢圓交于不同的兩點,若為銳角(為坐標原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知中心在原點O,焦點在x軸上的橢圓E過點(1,),離心率為.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線x+y+1=0與橢圓E相交于A、B(B在A上方)兩點,問是否存在直線l,使l與橢圓相交于C、D(C在D上方)兩點且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)設(shè)直線與直線交于點.
(1)當直線過點,且與直線垂直時,求直線的方程;
(2)當直線過點,且坐標原點到直線的距離為時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題12分)
已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
(1)焦點在x軸上的橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標準方程.
(2)已知雙曲線的一條漸近線方程是,并經(jīng)過點,求此雙曲線的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
( 本小題滿分12分)如圖所示,已知圓為圓上一動點,點在上,點在上,且滿足的軌跡為曲線。
求曲線的方程;
若過定點F(0,2)的直線交曲線于不同的兩點(點在點之間),且滿足,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓中心在原點,焦點在軸上,橢圓短軸的端點和焦點組成的四邊形為正方形,且.
(1)求橢圓方程;
(2)直線過點,且與橢圓相交于、不同的兩點,當面積取得最大值時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com