分析 正項(xiàng)數(shù)列{an},a1=1,前n項(xiàng)和Sn滿足${S_n}•\sqrt{{S_{n-1}}}-{S_{n-1}}•\sqrt{S_n}=2\sqrt{{S_n}•{S_{n-1}}}(n≥2)$,可得:$\frac{1}{\sqrt{{S}_{n}}}$-$\frac{1}{\sqrt{{S}_{n-1}}}$=2,利用等差數(shù)列的通項(xiàng)公式即可得出.
解答 解:∵正項(xiàng)數(shù)列{an},a1=1,前n項(xiàng)和Sn滿足${S_n}•\sqrt{{S_{n-1}}}-{S_{n-1}}•\sqrt{S_n}=2\sqrt{{S_n}•{S_{n-1}}}(n≥2)$,
∴$\frac{1}{\sqrt{{S}_{n}}}$-$\frac{1}{\sqrt{{S}_{n-1}}}$=2,
∴數(shù)列$\{\frac{1}{\sqrt{{S}_{n}}}\}$是等差數(shù)列,首項(xiàng)為1,公差為2.
∴$\frac{1}{\sqrt{{S}_{n}}}$=1+2(n-1)=2n-1.
∴Sn=$\frac{1}{(2n-1)^{2}}$.
故答案為:$\frac{1}{(2n-1)^{2}}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列的定義通項(xiàng)公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$ | B. | $\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$ | C. | $\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$ | D. | $-\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0} | B. | {0,1} | C. | {1,2} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com