已知f(x)=(cos4x-sin4x)+2.
(1)求函數(shù)f(x)的最小正周期、最大值和最小值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法,三角函數(shù)的最值
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:利用平方差公式及三角函數(shù)的平方關(guān)系化簡(jiǎn).
(1)直接由周期公式求周期,并由函數(shù)解析式得到函數(shù)的最值;
(2)利用復(fù)合函數(shù)的單調(diào)性求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答: 解:f(x)=(cos4x-sin4x)+2
=(cos2x+sin2x)(cos2x-sin2x)+2
=cos2x+2.
(1)函數(shù)的最小正周期T=
2
;最大值為3;最小值為-1;
(2)由-π+2kπ≤2x≤2kπ,得-
π
2
+kπ≤x≤kπ
,k∈Z.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[-
π
2
+kπ,kπ
],k∈Z.
點(diǎn)評(píng):本題考查了三角恒等變換的應(yīng)用,考查了三角函數(shù)的性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tanα=2,則
sin2α+1
sin2α+4cos2α
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線(xiàn)l:y=-4x+1被拋物線(xiàn)C所截的兩點(diǎn)AB的中點(diǎn)M的橫坐標(biāo)為-2.
(1)求拋物線(xiàn)C的方程;
(2)試問(wèn):是否存在定點(diǎn)M1,使過(guò)點(diǎn)M1的直線(xiàn)與拋物線(xiàn)C交于P,Q兩點(diǎn),且以PQ為直徑圓過(guò)原點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
,且|
a
|>|
b
|>0,則向量
a
+
b
的方向(  )
A、與向量
a
方向相同
B、與向量
a
方向相反
C、與向量
b
方向相同
D、與向量
b
方向相反

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=x3+log2x;
(2)y=xnex
(3)y=
x3-1
sinx
;
(4)y=(x+1)99;
(5)y=2e-x;
(6)y=2xsin(2x+5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,a5成等比數(shù)列,當(dāng)n≥5時(shí),an>0.
(1)求證:當(dāng)n≥5時(shí) {an}成等差數(shù)列;
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
的夾角為
π
4
a
=(-1,1),|
b
|=2,則|
a
+2
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)
|lgx|,x>0
1-x2,x≤0
,則方程f(2x2+x)=a(a>0)的根不可能為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)F作雙曲線(xiàn)漸線(xiàn)的垂線(xiàn)l,若直線(xiàn)l與雙曲線(xiàn)的左右兩支相交于AB兩點(diǎn),求雙曲線(xiàn)的離心率e的取值范圍
 

查看答案和解析>>

同步練習(xí)冊(cè)答案