分析 求出原函數(shù)的導函數(shù),由導數(shù)的幾何意義結(jié)合已知得到3x2-1+$\frac{6}{x}$≥m,然后利用基本不等式求最值,從而得到m的范圍.
解答 解:由h(x)=x3-x+6lnx,得h′(x)=3x2-1+$\frac{6}{x}$(x>0),
∵h(x)=x3-x+6lnx圖象上任意不同的兩點的連線的斜率都大于m,
由導數(shù)的幾何意義得3x2-1+$\frac{6}{x}$>m,
∵3x2+$\frac{3}{x}$+$\frac{3}{x}$≥3$\root{3}{3{x}^{2}•\frac{3}{x}•\frac{3}{x}}$=9,當且僅當x=1時取等號,
∴m<9-1=8,
∴實數(shù)m的取值范圍是(-∞,8).
故答案為:(-∞,8).
點評 本題考查利用導數(shù)研究曲線上某點的切線方程,考查了導數(shù)的幾何意義,以及基本不等式,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{7}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{60}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{3}$或$\frac{2π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{4}$或$\frac{5π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com