【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程):
在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ= 與曲線 (t為參數(shù))相交于A,B來(lái)兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為

【答案】(2.5,2.5)
【解析】解:射線θ= 的直角坐標(biāo)方程為y=x(x≥0),曲線 (t為參數(shù))化為普通方程為y=(x﹣2)2
聯(lián)立方程并消元可得x2﹣5x+4=0,∴方程的兩個(gè)根分別為1,4
∴線段AB的中點(diǎn)的橫坐標(biāo)為2.5,縱坐標(biāo)為2.5
∴線段AB的中點(diǎn)的直角坐標(biāo)為(2.5,2.5)
所以答案是:(2.5,2.5)
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解拋物線的參數(shù)方程的相關(guān)知識(shí),掌握拋物線的參數(shù)方程可表示為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)市場(chǎng)分析,廣饒縣馳中集團(tuán)某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本(萬(wàn)元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬(wàn)元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬(wàn)元.

1)寫(xiě)出月總成本(萬(wàn)元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;

2)已知該產(chǎn)品銷(xiāo)售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn);

3)當(dāng)月產(chǎn)量為多少?lài)崟r(shí), 每噸平均成本最低,最低成本是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象向右平移個(gè)單位后,再將所得圖象的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到的函數(shù)的圖象關(guān)于軸對(duì)稱(chēng),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓軸交于兩點(diǎn),且為圓心),過(guò)點(diǎn)且斜率為的直線與圓相交于兩點(diǎn)

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)若,求的取值范圍;

(Ⅲ)若向量與向量共線(為坐標(biāo)原點(diǎn)),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是( 。

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當(dāng)x∈[2,+∞)時(shí),

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點(diǎn)睛】

本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)以往的經(jīng)驗(yàn),某工程施工期間的將數(shù)量X(單位:mm)對(duì)工期的影響如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延誤天數(shù)Y

0

2

6

10

歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,求:
(1)工期延誤天數(shù)Y的均值與方差;
(2)在降水量X至少是300的條件下,工期延誤不超過(guò)6天的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=,x∈(-2,2).

(1) 判斷f(x)的奇偶性并說(shuō)明理由;

(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);

(3) 若f(2+a)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(多選題)設(shè)正實(shí)數(shù)滿(mǎn)足,則()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

(Ⅰ)求的取值范圍,并求出圓心坐標(biāo);

(Ⅱ)若圓的半徑為1,過(guò)點(diǎn)作圓的切線,求切線的方程;

(Ⅲ)有一動(dòng)圓的半徑為1,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案