【題目】根據(jù)以往的經(jīng)驗(yàn),某工程施工期間的將數(shù)量X(單位:mm)對(duì)工期的影響如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延誤天數(shù)Y

0

2

6

10

歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,求:
(1)工期延誤天數(shù)Y的均值與方差;
(2)在降水量X至少是300的條件下,工期延誤不超過(guò)6天的概率.

【答案】
(1)解:由題意,P(X<300)=0.3,P(300≤X<700)=P(X<700)﹣P(X<300)=0.7﹣0.3=0.4,P(700≤X<900)=P(X<900)﹣P(X<700)=0.9﹣0.7=0.2,P(X≥900)=1﹣0.9=0.1

Y的分布列為

Y

0

2

6

10

P

0.3

0.4

0.2

0.1

∴E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3

D(Y)=(0﹣3)2×0.3+(2﹣3)2×0.4+(6﹣3)2×0.2+(10﹣3)2×0.1=9.8

∴工期延誤天數(shù)Y的均值為3,方差為9.8;


(2)解:P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6

由條件概率可得P(Y≤6|X≥300)=


【解析】(1)由題意,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,結(jié)合某程施工期間的降水量對(duì)工期的影響,可求相應(yīng)的概率,進(jìn)而可得期延誤天數(shù)Y的均值與方差;(2)利用概率的加法公式可得P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6,利用條件概率,即可得到結(jié)論

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)當(dāng)m=-1時(shí),求AB;

(2)若AB,求實(shí)數(shù)m的取值范圍;

(3)若AB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中不正確的是( )

A. 平面平面,一條直線平行于平面,則一定平行于平面

B. 平面平面,則內(nèi)的任意一條直線都平行于平面

C. 一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行

D. 分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=eax﹣x,其中a≠0.
(1)若對(duì)一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函數(shù)f(x)的圖象上取定兩點(diǎn)A(x1 , f(x1)),B(x2 , f(x2)(x1<x2),記直線AB的斜率為K,問(wèn):是否存在x0∈(x1 , x2),使f′(x0)>k成立?若存在,求x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程):
在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ= 與曲線 (t為參數(shù))相交于A,B來(lái)兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是( 。

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當(dāng)x∈[2,+∞)時(shí),

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點(diǎn)睛】

本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}共有5項(xiàng),其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,則滿足條件的不同數(shù)列的個(gè)數(shù)為( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為某旅游區(qū)各景點(diǎn)的分布圖,圖中一條帶箭頭的線段表示一段有方向的路,試計(jì)算順著箭頭方向,從A到H不同的旅游路線的條數(shù),這個(gè)數(shù)是(  )

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿市場(chǎng)銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式

(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)

查看答案和解析>>

同步練習(xí)冊(cè)答案