【題目】已知數(shù)列的前項(xiàng)和為,若,,則__________ (用數(shù)字作答).
【答案】75
【解析】分析:根據(jù)題意可得a3+a4+a5=2,a30=18,a3n+a3n+1+a3n+2=n+1,則S30=a1+a2+(a3+a4+a5)+(a6+a7+a8)+…+(a27+a28+a29)+a30=75.
詳解:∵a3n=2n﹣2an,a3n+1=an+1,a3n+2=an﹣n,a1=1,a2=2,
∴a3=2﹣2a1=2﹣2=0,a4=a1+1=2,a5=a2﹣2=0,
∴a3+a4+a5=2
,,
∴把上面三個(gè)式子相加得a3n+a3n+1+a3n+2=n+1,
∴S30=a1+a2+(a3+a4+a5)+(a6+a7+a8)+…+(a27+a28+a29)+a30=1+2++18=75,
故答案為:75
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn),曲線(為參數(shù)),其中,在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線:.
(Ⅰ)若,求與公共點(diǎn)的直角坐標(biāo);
(Ⅱ)若與相交于不同的兩點(diǎn),是線段的中點(diǎn),當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( )
(1)很小的實(shí)數(shù)可以構(gòu)成集合;
(2)集合與集合是同一個(gè)集合;
(3) 這些數(shù)組成的集合有5個(gè)元素;
(4)任何集合至少有兩個(gè)子集.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列的定義可用數(shù)學(xué)符號(hào)語(yǔ)言描述為________,其中,其通項(xiàng)公式_________,__________=_________,等差數(shù)列中,若則________()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)于任意的,都有且當(dāng)時(shí),,若.
(1)求證:為奇函數(shù);
(2)求證: 是上的減函數(shù);
(3)求函數(shù)在區(qū)間[-2,4]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某屆世界杯足球賽上,a,b,c,d四支球隊(duì)進(jìn)入了最后的比賽,在第一輪的兩場(chǎng)比賽中,a對(duì)b,c對(duì)d,然后這兩場(chǎng)比賽的勝者將進(jìn)入冠亞軍決賽,這兩場(chǎng)比賽的負(fù)者比賽,決出第三名和第四名.比賽的一種最終可能結(jié)果記為acbd(表示a勝b,c勝d,然后a勝c,b勝d).
(1)寫出比賽所有可能結(jié)果構(gòu)成的樣本空間;
(2)設(shè)事件A表示a隊(duì)獲得冠軍,寫出A包含的所有可能結(jié)果;
(3)設(shè)事件B表示a隊(duì)進(jìn)入冠亞軍決賽,寫出B包含的所有可能結(jié)果.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某項(xiàng)體能測(cè)試中,規(guī)定每名運(yùn)動(dòng)員必需參加且最多兩次,一旦第一次測(cè)試通過(guò)則不再參加第二次測(cè)試,否則將參加第二次測(cè)試.已知甲每次通過(guò)的概率為,乙每次通過(guò)的概率為,且甲乙每次是否通過(guò)相互獨(dú)立.
(Ⅰ)求甲乙至少有一人通過(guò)體能測(cè)試的概率;
(Ⅱ)記為甲乙兩人參加體能測(cè)試的次數(shù)和,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域?yàn)?/span>的函數(shù)滿足:對(duì)于任意的實(shí)數(shù)都有成立,且當(dāng)時(shí), 恒成立,且是一個(gè)給定的正整數(shù)).
(1)判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(2)判斷并證明的單調(diào)性;若函數(shù)在上總有成立,試確定應(yīng)滿足的條件;
(3)當(dāng)時(shí),解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓C:的左、右焦點(diǎn)分別為、,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足為線段的中點(diǎn),且AB⊥。
(I)求橢圓C的離心率;
(II)若過(guò)A、B、三點(diǎn)的圓與直線:相切,求橢圓C的方程;
(III)在(I)的條件下,過(guò)右焦點(diǎn)作斜率為k的直線與橢圓C交于M,N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com