【題目】今有9所省級示范學校參加聯(lián)考,參加人數(shù)約5000人,考完后經(jīng)計算得數(shù)學平均分為113分.已知本次聯(lián)考的成績服從正態(tài)分布,且標準差為12.
(1)計算聯(lián)考成績在137分以上的人數(shù).
(2)從所有試卷中任意抽取1份,已知分數(shù)不超過123分的概率為0.8.
①求分數(shù)低于103分的概率.
②從所有試卷中任意抽取5份,由于試卷數(shù)量較大,可以把每份試卷被抽到的概率視為相同,表示抽到成績低于103分的試卷的份數(shù),寫出的分布列,并求出數(shù)學期望.
參考數(shù)據(jù):
,,
.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中已知A(4,O)、B(0,2)、C(-1,0)、D(0,-2),點E在線段AB(不含端點)上,點F在線段CD上,E、O、F三點共線.
(1)若F為線段CD的中點,證明:;
(2)“若F為線段CD的中點,則”的逆命題是否成立?說明理由;
(3)設(shè),求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點,且與定直線相切.
(1)求動圓圓心的軌跡的方程;
(2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國古代數(shù)學專著,其中的“更相減損術(shù)”可以用來求兩個數(shù)的最大公約數(shù),即“可半者半之,不可半者,副置分母、子之數(shù),以少減多,更相減損,求其等也,以等數(shù)約之.”翻譯成現(xiàn)代語言如下:第一步,任意給定兩個正整數(shù),判斷它們是否都是偶數(shù),若是,用2約簡;若不是,執(zhí)行第二步:第二步,以較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,知道所得的數(shù)相等為止,則這個數(shù)(等數(shù))或這個數(shù)與約簡的數(shù)的乘積就是所求的最大公約數(shù).現(xiàn)給出更相減損術(shù)的程序圖如圖所示,如果輸入的,,則輸出的為( ).
A. 3B. 6C. 7D. 8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司全年的純利潤為元,其中一部分作為獎金發(fā)給位職工,獎金分配方案如下首先將職工工作業(yè)績(工作業(yè)績均不相同)從大到小,由1到排序,第1位職工得獎金元,然后再將余額除以發(fā)給第2位職工,按此方法將獎金逐一發(fā)給每位職工,并將最后剩余部分作為公司發(fā)展基金.
(1)設(shè)為第位職工所得獎金額,試求并用和表示(不必證明);
(2)證明并解釋此不等式關(guān)于分配原則的實際意義;
(3)發(fā)展基金與和有關(guān),記為對常數(shù),當變化時,求.(可用公式)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線(為參數(shù),實數(shù)).在以為極點,軸的正半軸為極軸的極坐標系中,射線與交于,兩點,與交于,兩點.當時,;當,.
(1)求和的值.
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解地區(qū)足球特色學校的發(fā)展狀況,某調(diào)查機構(gòu)得到如下統(tǒng)計數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學校(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(Ⅰ)根據(jù)上表數(shù)據(jù),計算與的相關(guān)系數(shù),并說明與的線性相關(guān)性強弱(已知:,則認為與線性相關(guān)性很強;,則認為與線性相關(guān)性一般;,則認為與線性相關(guān)性較弱);
(Ⅱ)求關(guān)于的線性回歸方程,并預(yù)測地區(qū)2019年足球特色學校的個數(shù)(精確到個)
參考公式:,,,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P的“伴隨點”為;
當P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構(gòu)成的曲線定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點A的“伴隨點”是點,則點的“伴隨點”是點A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對稱,則其“伴隨曲線”關(guān)于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,∠ABC=,,∠ADC=,PA⊥平面ABCD且PA=.
(1)求直線AD到平面PBC的距離;
(2)求出點A到直線PC的距離;
(3)在線段AD上是否存在一點F,使點A到平面PCF的距離為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com