【題目】今有9所省級示范學校參加聯(lián)考,參加人數(shù)約5000人,考完后經(jīng)計算得數(shù)學平均分為113分.已知本次聯(lián)考的成績服從正態(tài)分布,且標準差為12.

(1)計算聯(lián)考成績在137分以上的人數(shù).

(2)從所有試卷中任意抽取1份,已知分數(shù)不超過123分的概率為0.8.

①求分數(shù)低于103分的概率.

②從所有試卷中任意抽取5份,由于試卷數(shù)量較大,可以把每份試卷被抽到的概率視為相同,表示抽到成績低于103分的試卷的份數(shù),寫出的分布列,并求出數(shù)學期望.

參考數(shù)據(jù):

,,

.

【答案】(1)114人; (2)① .

【解析】

(1)利用正態(tài)分布的概率公式求得滿足條件的概率,再乘以總?cè)藬?shù),可得結(jié)果.

(2)①直接利用正態(tài)分布曲線的對稱性求得結(jié)果.

②由題意易知找到x的取值,分別求出相應(yīng)的概率,由此能求出X的分布列和EX).

(1)設(shè)本次聯(lián)考成績?yōu)?/span>,由題意知在正態(tài)分布中,,

因為,所以,

故所求人數(shù)為(人).

(2)①.

②由題意易知

,

,

,

,,

0

1

2

3

4

5

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中已知A(4,O)B(0,2)、C(-1,0)、D(0,-2),E在線段AB(不含端點),F在線段CD,E、O、F三點共線.

(1)F為線段CD的中點,證明:

(2)“F為線段CD的中點,的逆命題是否成立?說明理由;

(3)設(shè),的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,且與定直線相切.

1)求動圓圓心的軌跡的方程;

2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是中國古代數(shù)學專著,其中的“更相減損術(shù)”可以用來求兩個數(shù)的最大公約數(shù),即“可半者半之,不可半者,副置分母、子之數(shù),以少減多,更相減損,求其等也,以等數(shù)約之.”翻譯成現(xiàn)代語言如下:第一步,任意給定兩個正整數(shù),判斷它們是否都是偶數(shù),若是,用2約簡;若不是,執(zhí)行第二步:第二步,以較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,知道所得的數(shù)相等為止,則這個數(shù)(等數(shù))或這個數(shù)與約簡的數(shù)的乘積就是所求的最大公約數(shù).現(xiàn)給出更相減損術(shù)的程序圖如圖所示,如果輸入的,則輸出的為( ).

A. 3B. 6C. 7D. 8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司全年的純利潤為,其中一部分作為獎金發(fā)給位職工,獎金分配方案如下首先將職工工作業(yè)績(工作業(yè)績均不相同)從大到小,1排序,1位職工得獎金,然后再將余額除以發(fā)給第2位職工,按此方法將獎金逐一發(fā)給每位職工,并將最后剩余部分作為公司發(fā)展基金.

(1)設(shè)為第位職工所得獎金額,試求并用表示(不必證明);

(2)證明并解釋此不等式關(guān)于分配原則的實際意義;

(3)發(fā)展基金與有關(guān),記為對常數(shù),變化時,.(可用公式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線為參數(shù),實數(shù)),曲線為參數(shù),實數(shù)).在以為極點,軸的正半軸為極軸的極坐標系中,射線交于兩點,與交于,兩點.當時,;當.

(1)求的值.

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解地區(qū)足球特色學校的發(fā)展狀況,某調(diào)查機構(gòu)得到如下統(tǒng)計數(shù)據(jù):

年份

2014

2015

2016

2017

2018

足球特色學校(百個)

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根據(jù)上表數(shù)據(jù),計算的相關(guān)系數(shù),并說明的線性相關(guān)性強弱(已知:,則認為線性相關(guān)性很強;,則認為線性相關(guān)性一般;,則認為線性相關(guān)性較弱);

(Ⅱ)求關(guān)于的線性回歸方程,并預(yù)測地區(qū)2019年足球特色學校的個數(shù)(精確到個)

參考公式:,,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P伴隨點;

P是原點時,定義P伴隨點為它自身,平面曲線C上所有點的伴隨點所構(gòu)成的曲線定義為曲線C伴隨曲線”.現(xiàn)有下列命題:

若點A伴隨點是點,則點伴隨點是點A

單位圓的伴隨曲線是它自身;

若曲線C關(guān)于x軸對稱,則其伴隨曲線關(guān)于y軸對稱;

一條直線的伴隨曲線是一條直線.

其中的真命題是_____________(寫出所有真命題的序列).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD,AD//BC,ABC=,,ADC=,PA⊥平面ABCDPA=.

(1)求直線AD到平面PBC的距離;

(2)求出點A到直線PC的距離;

(3)在線段AD上是否存在一點F,使點A到平面PCF的距離為.

查看答案和解析>>

同步練習冊答案