【題目】《九章算術(shù)》是中國(guó)古代數(shù)學(xué)專(zhuān)著,其中的“更相減損術(shù)”可以用來(lái)求兩個(gè)數(shù)的最大公約數(shù),即“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之.”翻譯成現(xiàn)代語(yǔ)言如下:第一步,任意給定兩個(gè)正整數(shù),判斷它們是否都是偶數(shù),若是,用2約簡(jiǎn);若不是,執(zhí)行第二步:第二步,以較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個(gè)操作,知道所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))或這個(gè)數(shù)與約簡(jiǎn)的數(shù)的乘積就是所求的最大公約數(shù).現(xiàn)給出更相減損術(shù)的程序圖如圖所示,如果輸入的,,則輸出的為( ).

A. 3B. 6C. 7D. 8

【答案】C

【解析】

由循環(huán)結(jié)構(gòu)的特點(diǎn),先判斷,再執(zhí)行,分別計(jì)算出當(dāng)前的ab的值,即可得到結(jié)論.

,滿足a,b都是偶數(shù),則a=57,b=15,k=2;

不滿足a,b都是偶數(shù),且不滿足a=b,滿足a>b,則a=57-15=42,n=1,

不滿足a=b,滿足a>b,則a=42-15=27,n=2,

不滿足a=b,滿足a>b,則a=27-15=12,n=3,

不滿足a=b,不滿足a>b,則c=12,a=15,b=12,

則a=15-12=3,n=4,

不滿足a=b,不滿足a>b,則c=3,a=12,b=3,

則a=12-3=9,n=5,

不滿足a=b,滿足a>b,則a=9-3=6,n=6,

不滿足a=b,滿足a>b,則a=6-3=3,n=7,

滿足a=b,結(jié)束循環(huán),輸出n=7,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知函數(shù).

(1)求函數(shù)在點(diǎn)處的切線方程;

(2)已知函數(shù)區(qū)間上的最小值為1,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)用行列式判斷關(guān)于的二元一次方程組解的情況;

(2)用行列試解關(guān)于的二元一次方程組并對(duì)解的情況進(jìn)行討論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,中點(diǎn).

證明:平面

線段上是否存在點(diǎn),使三棱錐的體積為?若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,其中一個(gè)焦點(diǎn)F在直線.

1)求橢圓C的方程;

2)若直線和直線與橢圓分別相交于點(diǎn)、、,求的值;

3)若直線與橢圓交于P,Q兩點(diǎn),試求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)若函數(shù)存在5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今有9所省級(jí)示范學(xué)校參加聯(lián)考,參加人數(shù)約5000人,考完后經(jīng)計(jì)算得數(shù)學(xué)平均分為113分.已知本次聯(lián)考的成績(jī)服從正態(tài)分布,且標(biāo)準(zhǔn)差為12.

(1)計(jì)算聯(lián)考成績(jī)?cè)?37分以上的人數(shù).

(2)從所有試卷中任意抽取1份,已知分?jǐn)?shù)不超過(guò)123分的概率為0.8.

①求分?jǐn)?shù)低于103分的概率.

②從所有試卷中任意抽取5份,由于試卷數(shù)量較大,可以把每份試卷被抽到的概率視為相同,表示抽到成績(jī)低于103分的試卷的份數(shù),寫(xiě)出的分布列,并求出數(shù)學(xué)期望.

參考數(shù)據(jù):

,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查大學(xué)生的性別與愛(ài)好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過(guò)隨機(jī)詢(xún)問(wèn)110名不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

參照附表,得到的正確結(jié)論是( )

A.有995%以上的把握認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

B.有995%以上的把握認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

C.在犯錯(cuò)誤的概率不超過(guò)005%的前提下,認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

D.在犯錯(cuò)誤的概率不超過(guò)005%的前提下,認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn).

1)求雙曲線的方程;

2)若點(diǎn)在雙曲線上,求 的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案