等差數(shù)列{an} 中,已知a3+a4+a9+a14+a15=10,則S17=(  )
A、34B、68C、170D、51
考點:等差數(shù)列的性質(zhì),等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由題意和等差數(shù)列的性質(zhì)可得a9=2,進而由求和公式和性質(zhì)可得S17=17a9,代值計算可得.
解答: 解:∵等差數(shù)列{an} 中a3+a4+a9+a14+a15=10,
又由等差數(shù)列的性質(zhì)可得a3+a15=a4+a14=2a9
∴5a9=10,解得a9=2,
∴S17=
17(a1+a17)
2
=
17×2a9
2
=17a9=34
故選:A
點評:本題考查等差數(shù)列的性質(zhì)和求和公式,得出a9=2是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4位顧客將各自的帽子放在衣架上,然后,每人隨意取走一頂帽子,則4人拿的都是自己的帽子的概率為
 
,恰有3人拿到自己帽子的概率為
 
,恰有1人拿到自己帽子的概率為
 
,4人拿的都不是自己帽子的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C所對邊的長分別為a,b,c,若a2+b2=2c2,則cosC的最小值為( 。
A、
1
2
B、
2
2
C、
3
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,則a•b>0是a>0且b>0的(  )條件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個平面向量
a
=(x1,y1),
b
=(x2,y2),定義運算“☉”為:
a
b
=(x1x2+y1y2,x1y2-y1x2).若
m
=(1,2),
m
n
=(11,-6),則
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=3x與圓x2+y2=4圍成的封閉圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x、y滿足
x-y+1≥0
x+y≥0
x≤0
則z=3x+2y的最大值是( 。
A、
1
3
B、9
C、1
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在同一個坐標系中,函數(shù)y=2xy=log
1
2
x
的圖象最可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}是等比數(shù)列且a1005=100,則lga12+lga22+…+lga20092=
 

查看答案和解析>>

同步練習(xí)冊答案