【題目】已知函數(shù)f(x)=cos2,g(x)=1+sin 2x.
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,求g(x0)的值.
(2)若函數(shù)h(x)=f(x)+g(x)在區(qū)間上的最大值為2,求m的最小值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)根據(jù)二倍角公式得到函數(shù)表達(dá)式,由對(duì)稱軸的性質(zhì)得到2x0+=kπ,進(jìn)而得到2x0=kπ-,所以g(x0)=1+sin,分k為奇和偶兩種情況得到結(jié)果;(2))h(x)==sin+,因?yàn)?/span>x∈,所以2x+∈,由題意得到sin在上的最大值為1,所以2m+≥.
(1)由題設(shè)知f(x)= .
因?yàn)閤=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,所以2x0+=kπ,
即2x0=kπ- (k∈Z).
所以g(x0)=1+sin 2x0=1+sin.
當(dāng)k為偶數(shù)時(shí),g(x0)=1+sin=1-=,
當(dāng)k為奇數(shù)時(shí),g(x0)=1+sin=1+=.
(2)h(x)=f(x)+g(x)= +1+sin 2x
= += +
=sin+.
因?yàn)閤∈,所以2x+∈.
要使得h(x)在上的最大值為2,即sin在上的最大值為1.
所以2m+≥,
即m≥.所以m的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù)y=sin4x﹣cos4x的圖象,可以將函數(shù)y=sin4x的圖象( 。
A.向右平移個(gè)單位
B.向左平移個(gè)單位
C.向右平移個(gè)單位
D.向左平移個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列中,,前項(xiàng)和滿足條件,
(1)求數(shù)列的通項(xiàng)公式和;
(2)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對(duì)角線MN過(guò)點(diǎn)C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面積大于9平方米,則DN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)當(dāng)DN的長(zhǎng)度為多少時(shí),矩形花壇AMPN的面積最。坎⑶蟪鲎钚≈担
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx(a>0),e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若過(guò)點(diǎn)A(2,f(2))的切線斜率為2,求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)x>0時(shí),求證:f(x)≥a(1﹣);
(Ⅲ)在區(qū)間(1,e)上>1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x-1)2+(y-2)2=2,過(guò)點(diǎn)P(2,-1)作圓C的切線,切點(diǎn)為A,B.
(1)求直線PA,PB的方程;
(2)求過(guò)P點(diǎn)的圓C的切線長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) , 是兩個(gè)非零向量,則下列哪個(gè)描述是正確的( )
A.若|+|=||﹣||,則⊥
B.若⊥ , 則|+|=||﹣||
C.若|+|=||﹣||,則存在實(shí)數(shù)λ使得=
D.若存在實(shí)數(shù)λ使得= , 則|+|=||﹣||
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫(xiě)出直線l與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過(guò)伸縮變換得到曲線C′,設(shè)曲線C′上任一點(diǎn)為M(x,y),求x+2y的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,漸近線方程為y=±x,且雙曲線過(guò)點(diǎn)P(4,-).
(1)求雙曲線的方程;
(2)若點(diǎn)M(x1,y1)在雙曲線上,求的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com