【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點的極坐標(biāo)為,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點在上,點在上(異于極點),若四點依次在同一條直線上,且成等比數(shù)列,求的極坐標(biāo)方程.
【答案】(1);(2)或
【解析】
(1)先根據(jù)平方關(guān)系消元得曲線的直角坐標(biāo)方程,再根據(jù)將直角坐標(biāo)方程化為極坐標(biāo)方程,最后代入點極坐標(biāo),可求出的值,進(jìn)而得出答案;
(2)先設(shè)直線的極坐標(biāo)方程為,代入,根據(jù)成等比數(shù)列得,代入化簡可得,進(jìn)而可得出答案.
(1)曲線的直角坐標(biāo)方程為,化簡得,
又,,所以.
代入點,可得,解得或,
因為,所以,所以曲線的極坐標(biāo)方程為.
(2)由題意,可設(shè)直線的極坐標(biāo)方程為,設(shè)點,則.
聯(lián)立,得,所以,.
聯(lián)立,得.
因為成等比數(shù)列,所以,即.
所以,解得.
所以的極坐標(biāo)方程為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代在珠算發(fā)明之前多是用算籌為工具來記數(shù)、列式和計算的.算籌實際上是一根根相同長度的小木棍,如圖,算籌表示數(shù)1~9的方法有“縱式”和“橫式”兩種,規(guī)定個位數(shù)用縱式,十位數(shù)用橫式,百位數(shù)用縱式,千位數(shù)用橫式,萬位數(shù)用縱式,…,以此類推,交替使用縱橫兩式.例如:627可以表示為“”.如果用算籌表示一個不含“0”且沒有重復(fù)數(shù)字的三位數(shù),這個數(shù)至少要用7根小木棍的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為,焦距為2,拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點.
(1)求橢圓與拋物線的方程;
(2)直線經(jīng)過橢圓的上頂點且與拋物線交于,兩點,直線,與拋物線分別交于點(異于點),(異于點),證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究不同性別在處理多任務(wù)時的表現(xiàn)差異,召集了男女志愿者各200名,要求他們同時完成多個任務(wù),包括解題、讀地圖、接電話.下圖表示了志愿者完成任務(wù)所需的時間分布.以下結(jié)論,對志愿者完成任務(wù)所需的時間分布圖表理解正確的是( )
①總體看女性處理多任務(wù)平均用時更短;
②所有女性處理多任務(wù)的能力都要優(yōu)于男性;
③男性的時間分布更接近正態(tài)分布;
④女性處理多任務(wù)的用時為正數(shù),男性處理多任務(wù)的用時為負(fù)數(shù).
A.①④B.②③C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:的圓心為,圓:的圓心為,一動圓與圓內(nèi)切,與圓外切.
(1)求動圓圓心的軌跡方程;
(2)過點的直線與曲線交于,兩點,點是直線上任意點,直線,,的斜率分別為,,,試探求,,的關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣一中學(xué)的同學(xué)為了解本縣成年人的交通安全意識情況,利用假期進(jìn)行了一次全縣成年人安全知識抽樣調(diào)查.已知該縣成年人中的擁有駕駛證,先根據(jù)是否擁有駕駛證,用分層抽樣的方法抽取了100名成年人,然后對這100人進(jìn)行問卷調(diào)查,所得分?jǐn)?shù)的頻率分布直方圖如下圖所示.規(guī)定分?jǐn)?shù)在80以上(含80)的為“安全意識優(yōu)秀”.
擁有駕駛證 | 沒有駕駛證 | 合計 | |
得分優(yōu)秀 | |||
得分不優(yōu)秀 | 25 | ||
合計 | 100 |
(1)補(bǔ)全上面的列聯(lián)表,并判斷能否有超過的把握認(rèn)為“安全意識優(yōu)秀與是否擁有駕駛證”有關(guān)?
(2)若規(guī)定參加調(diào)查的100人中分?jǐn)?shù)在70以上(含70)的為“安全意識優(yōu)良”,從參加調(diào)查的100人中根據(jù)安全意識是否優(yōu)良,按分層抽樣的方法抽出5人,再從5人中隨機(jī)抽取3人,試求抽取的3人中恰有一人為“安全意識優(yōu)良”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左、右焦點分別為、,拋物線的焦點恰好是該橢圓的一個頂點.
(1)求橢圓的方程;
(2)已知圓的切線(直線的斜率存在且不為零)與橢圓相交于、兩點,那么以為直徑的圓是否經(jīng)過定點?如果是,求出定點的坐標(biāo);如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點P(x0,y0)在曲線y=x2(x>0)上.已知A(0,-1),,n∈N*.記直線APn的斜率為kn.
(1)若k1=2,求P1的坐標(biāo);
(2)若k1為偶數(shù),求證:kn為偶數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com