【題目】在三棱錐D﹣ABC中,已知AB=BC=AD= ,BD=AC=2,BC⊥AD,則三棱錐D﹣ABC外接球的表面積為(
A.6π
B.12π
C.6 π
D.6 π

【答案】A
【解析】解:∵AB=BC=AD= ,BD=AC=2,BC⊥AD,
∴AB2+BC2=AC2 , AD2+AB2=BD2 ,
AB⊥BC,AD⊥AB,
∵BC∩AB=C,AB∩BC=B,
∴BC⊥面ABD,AD⊥面ABC,
∵BD面ABD,AC面ACB;
∴BD⊥BC,AD⊥AC,
∵O為DC中點(diǎn),
∴直角三角形中得出:OA=OB=OC=OD,
O 為外接球的球心,
半徑R= = ,
∴三棱錐D﹣ABC外接球的表面積為:4π×( 2=6π,
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角中,垂心關(guān)于邊、的對稱點(diǎn)分別為、、,關(guān)于邊、的中點(diǎn)、的對稱點(diǎn)分別為、、.證明:

(1)、、、六點(diǎn)共圓;

(2)

(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1) 判斷函數(shù)的單調(diào)性并給出證明;

(2)若存在實(shí)數(shù)使函數(shù)是奇函數(shù),求

(3)對于(2)中的,若,當(dāng)時(shí)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:x2+y2=4,圓C2:(x﹣2)2+y2=4.
(1)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別求圓C1與圓C2的極坐標(biāo)方程及兩圓交點(diǎn)的極坐標(biāo);
(2)求圓C1與圓C2的公共弦的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|﹣2|x|.
(1)求不等式f(x)≤﹣6的解集;
(2)若存在實(shí)數(shù)x滿足f(x)=log2a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二某班共有20名男生,在一次體驗(yàn)中這20名男生被平均分成兩個(gè)小組,第一組和第二組男生的身高(單位: )的莖葉圖如下:

1)根據(jù)莖葉圖,分別寫出兩組學(xué)生身高的中位數(shù);

2)從該班身高超過7名男生中隨機(jī)選出2名男生參加;@球隊(duì)集訓(xùn),求這2名男生至少有1人來自第二組的概率;

3)在兩組身高位于(單位: )的男生中各隨機(jī)選出2人,設(shè)這4人中身高位于(單位: )的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價(jià)x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))S元.試問銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤?最大毛利潤是多少?此時(shí)的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=
(1)求函數(shù)f(x)在[0,2]上得單調(diào)區(qū)間;
(2)當(dāng)m=0,k∈R時(shí),求函數(shù)g(x)=f(x)﹣kx2在R上零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案