【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:x2+y2=4,圓C2:(x﹣2)2+y2=4.
(1)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別求圓C1與圓C2的極坐標(biāo)方程及兩圓交點(diǎn)的極坐標(biāo);
(2)求圓C1與圓C2的公共弦的參數(shù)方程.
【答案】
(1)解:在平面直角坐標(biāo)系xOy中,已知圓C1:x2+y2=4,
轉(zhuǎn)化成極坐標(biāo)方程為:ρ=2.
圓C2:(x﹣2)2+y2=4.
轉(zhuǎn)化成極坐標(biāo)方程為:ρ=4cosθ,
所以:
解得:ρ=2, ,(k∈Z).
交點(diǎn)坐標(biāo)為:(2,2kπ+ ),(2,2k ).
(2)解:已知圓C1:x2+y2=4①
圓C2:(x﹣2)2+y2=4②
所以:①﹣②得:x=1,y= ,
即(1,﹣ ),(1, ).
所以公共弦的參數(shù)方程為:
【解析】(1)首先把直角坐標(biāo)方程轉(zhuǎn)化成極坐標(biāo)方程,進(jìn)一步建立極坐標(biāo)方程組求出交點(diǎn)坐標(biāo),再轉(zhuǎn)化成極坐標(biāo).(2)利用二元二次方程組解得交點(diǎn)坐標(biāo)再轉(zhuǎn)化成參數(shù)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn),一個(gè)焦點(diǎn)為的橢圓被直線截得的弦的中點(diǎn)的橫坐標(biāo)為.
(1)求此橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),且以為對(duì)角線的菱形的一個(gè)頂點(diǎn)為,求面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c.已知a+c=3 ,b=3.
(1)求cosB的最小值;
(2)若 =3,求A的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn), ,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點(diǎn),且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐D﹣ABC中,已知AB=BC=AD= ,BD=AC=2,BC⊥AD,則三棱錐D﹣ABC外接球的表面積為( )
A.6π
B.12π
C.6 π
D.6 π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, , 且, 和都是邊長為2的等邊三角形,設(shè)在底面的投影為.
(1)求證: 是的中點(diǎn);
(2)證明: ;
(3)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com