已知函數(shù)f(x)=
1
x
+alnx,其中a為實(shí)常數(shù).
(1)求f(x)的極值;
(2)若對(duì)任意x1,x2∈[1,3],且x1<x2,恒有
1
x1
-
1
x2
>|f(x1)-f(x2)|成立,求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)f(x)的定義域?yàn)椋?,+∞),求導(dǎo)f′(x)=
ax-1
x2
,由導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)性及極值;
(2)|f(x1)-f(x2)|<
1
x1
-
1
x2
,?x1,x2∈[1,3],x1x2
恒成立可化為
f(x1)-f(x2)<
1
x1
-
1
x2
f(x1)-f(x2)>
1
x2
-
1
x1
對(duì)?x1,x2∈[1,3],x1<x2恒成立,從而可得g(x)=f(x)-
1
x
=alnx
在[1,3]遞增,h(x)=f(x)+
1
x
=
1
x
alnx+
2
x
在[1,3]遞減;從而化為導(dǎo)數(shù)的正負(fù)問題.
解答: 解:(1)由已知f(x)的定義域?yàn)椋?,+∞),
f′(x)=
ax-1
x2
,
當(dāng)a>0時(shí),f(x)在(0,
1
a
)
上單調(diào)遞減,在(
1
a
,+∞)
上單調(diào)遞增;
當(dāng)x=
1
a
時(shí),f(x)有極小值a-alna,無(wú)極大值;
當(dāng)a≤0時(shí),f(x)在(0,+∞)遞減,f(x)無(wú)極值;
(2)∵|f(x1)-f(x2)|<
1
x1
-
1
x2
,?x1x2∈[1,3],x1x2
恒成立,
f(x1)-f(x2)<
1
x1
-
1
x2
f(x1)-f(x2)>
1
x2
-
1
x1
對(duì)?x1,x2∈[1,3],x1<x2恒成立;
f(x1)-
1
x1
<f(x2)-
1
x2
f(x1)+
1
x1
>f(x2)+
1
x2
對(duì)?x1,x2∈[1,3],x1<x2恒成立;
g(x)=f(x)-
1
x
=alnx
在[1,3]遞增,h(x)=f(x)+
1
x
=
1
x
alnx+
2
x
在[1,3]遞減;
從而有
a>0
h′(x)=
a
x
-
2
x2
=
ax-2
x2
≤0
對(duì)x∈[1,3]恒成立;
0<a≤
2
3
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的綜合應(yīng)用及恒成立問題的轉(zhuǎn)化與應(yīng)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

約束條件
y≥-1
x-y≥2
3x+y≤14
,若使z=ax+y取得最大值的最優(yōu)解有無(wú)窮多個(gè),則實(shí)數(shù)a的取值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(
1
x
)=
x
1+x
,則f′(x)等于( 。
A、
x
1+x
B、-
x
1+x
C、
1
(1+x)2
D、-
1
(1+x)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},{bn}分別滿足a1a2…an=n(n-1)…2•1,b1+b2+…+bn=an2
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{
1
bnbn+1
}的前n項(xiàng)和為Sn,若對(duì)任意x∈R,anSn>-x2-2x+9恒成立,求自然數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=4,an+1=an+p•3n+1,n∈N*,p為常數(shù)a1,a2+6,a3成等差數(shù)列.
(1)求p的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn},bn=
n2
an-n
,求{bn}的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且{
Sn
n
}是等差數(shù)列,已知a1=1,
S2
2
+
S3
3
+
S4
4
=12.
(Ⅰ)求{an}的通項(xiàng)公式an
(Ⅱ)當(dāng)n≥2時(shí),an+1+
λ
an
≥λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、
7
3
B、
9
2
C、
7
2
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):sinαcos5α-cosαsin5α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙峰一中是蔡和森的母校,已有百多年歷史,學(xué)校教育教學(xué)質(zhì)量穩(wěn)步提高,今年高考喜獲豐收,明年高考定會(huì)再創(chuàng)輝煌.為了貫徹全面發(fā)展的教育方針,學(xué)校決定新建造一個(gè)面積為10000平方米的運(yùn)動(dòng)場(chǎng).如圖,運(yùn)動(dòng)場(chǎng)是由一個(gè)矩形ABCD和分別以AD、BC為直徑的兩個(gè)半圓組成.跑道是一條寬8米的塑膠跑道,運(yùn)動(dòng)場(chǎng)除跑道外,其他地方均鋪設(shè)草皮.已知塑膠跑道每平方米造價(jià)為150元,草皮每平方米造價(jià)為30元.
(1)設(shè)半圓的半徑OA=r(米),試建立塑膠跑道面積S與r的函數(shù)關(guān)系式S(r);
(2)由于條件限制r∈[30,40],問當(dāng)r取何值時(shí),運(yùn)動(dòng)場(chǎng)造價(jià)最低?最低造價(jià)是多少元?(精確到元,π≈3.1416)

查看答案和解析>>

同步練習(xí)冊(cè)答案