分析 (1)根據(jù)數(shù)列的通項an和Sn的關系,即可求解{an}的項公式;
(2)由bn=2+$\frac{1}{2}$($\frac{1}{n+1}$-$\frac{1}{n+3}$),即可利用裂項相消法求數(shù)列{bn}的前n項和為Tn,繼而得以證明.
解答 (本小題滿分12分)
解:(1)當n≥2時,an=Sn-Sn-1=$\frac{{n}^{2}}{2}+\frac{3n}{2}$-$\frac{{(n-1)}^{2}}{2}$-$\frac{3(n-1)}{2}$=n+1,
又當n=1時,a1=S1=2適合an=n+1;
∴an=n+1.…(5分)
(2)證明:由(1)知bn=n+3-(n+1)+$\frac{1}{(n+3)(n+1)}$=2+$\frac{1}{2}$($\frac{1}{n+1}$-$\frac{1}{n+3}$),…(7分)
∴Tn=b1+b2+b3+…+bn=2n+$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n+1}$-$\frac{1}{n+3}$)…(10分)
=2n+$\frac{1}{2}$($\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{n+2}$-$\frac{1}{n+3}$)<2n+$\frac{5}{12}$…(12分).
點評 本題考查數(shù)列遞推式的應用,考查裂項法求和,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 75° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 7 | C. | 4+4$\sqrt{2}$ | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{5}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ | B. | ($\frac{1}{2}$)${\;}^{\frac{1}{3}}$>($\frac{1}{2}$)${\;}^{\frac{2}{3}}$>($\frac{1}{5}$)${\;}^{\frac{2}{3}}$ | ||
C. | ($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{5}$)${\;}^{\frac{2}{3}}$ | D. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$><($\frac{1}{5}$)${\;}^{\frac{2}{3}}$>($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<1 | B. | 1<a<2 | C. | 1<a<$\sqrt{2}$ | D. | 0<a<2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{25}{36}$ | D. | $\frac{11}{36}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com