【題目】已知函數(shù).

(1)求函數(shù);

(2)設(shè)函數(shù),其中a∈(1,2),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.

【答案】(1) 是函數(shù)的極小值點(diǎn),極大值點(diǎn)不存在.(2) 的最小值為

【解析】試題分析:對(duì)函數(shù)求導(dǎo),令導(dǎo)數(shù)為零,求出值,劃分區(qū)間,研究導(dǎo)數(shù)在個(gè)區(qū)間內(nèi)的符號(hào),得出極值點(diǎn);寫出函數(shù),求導(dǎo)得出,令,得出,研究的單調(diào)性,根據(jù),得出的范圍,求出最值.

試題解析:

(1)函數(shù)的定義域?yàn)?/span>, , 由f′(x)=0得,

所以f′(x)在區(qū)間上單調(diào)遞減,在 上單調(diào)遞增.

所以是函數(shù)的極小值點(diǎn),極大值點(diǎn)不存在.

(2),則,

,得.

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

當(dāng)a∈(1,2), ,由于, 當(dāng)時(shí), 取得最小值

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足 acosC﹣csinA=0.
(1)求角C的大;
(2)已知b=4,△ABC的面積為6 ,求邊長(zhǎng)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓C: (a>b>0).稱圓心在原點(diǎn)O,半徑為 的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F( ,0),其短軸上的一個(gè)端點(diǎn)到點(diǎn)F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作直線l1 , l2 , 使得l1 , l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1 , l2是否垂直,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時(shí), ;

(Ⅱ)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1979年,李政道博士給中國(guó)科技大學(xué)少年班出過(guò)一道智趣題:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡覺,準(zhǔn)備第二天再分,夜里1只猴子偷偷爬起來(lái),先吃掉一個(gè)桃子,然后將其分成5等份,藏起自己的一份就去睡覺了;第2只猴子又爬起來(lái),將剩余的桃子吃掉一個(gè)后,也將桃子分成5等份;藏起自己的一份睡覺去了;以后的3只猴子都先后照此辦理,問(wèn):最初至少有多少個(gè)桃子?最后至少剩下多少個(gè)桃子?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)

已知如下等式: , ,

當(dāng)時(shí),試猜想的值,并用數(shù)學(xué)歸納法給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測(cè),每件一等品都能通過(guò)檢測(cè),每件二等品通過(guò)檢測(cè)的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.

(Ⅰ)隨機(jī)選取件產(chǎn)品,設(shè)至少有一件通過(guò)檢測(cè)為事件,求事件的概率;

(Ⅱ)隨機(jī)選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosωx,sinωx), =(cosωx, cosωx),其中ω>0,設(shè)函數(shù)f(x)=
(1)若函數(shù)f(x)的最小正周期是π,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的圖象的一個(gè)對(duì)稱中心的橫坐標(biāo)為 ,求ω的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案