【題目】已知是二次函數(shù),不等式<0的解集是(0,5),且在區(qū)間[-1,4]上的最大值是12.
(1)求的解析式.
(2)作出二次函數(shù)y=在 [-1,4]上的圖像并求出值域.
【答案】(1); (2)見(jiàn)解析,值域?yàn)?/span>.
【解析】
(1)設(shè)二次函數(shù)的解析式為,根據(jù)題意,得到,
且,列出方程組,求得的值,即可得到函數(shù)的解析式;
(2)由函數(shù),結(jié)合二次函數(shù)的圖象與性質(zhì),得出函數(shù)的圖象,進(jìn)而求得函數(shù)的值域。
(1)設(shè)二次函數(shù)的解析式為,
因?yàn)椴坏仁?/span>的解集是,所以,且,
所以函數(shù)的對(duì)稱軸的方程為,
又由函數(shù)在上的最大值為,即,
所以,解得,
即函數(shù)的解析式為。
(2)由題意,可得函數(shù),
函數(shù)的圖象如圖所示,
由圖象可得,函數(shù)的最小為,最大值為,
所以函數(shù)的值域?yàn)?/span>。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求的最小值及取得最小值時(shí)的取值范圍;
(Ⅱ)若集合,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若只有一個(gè)零點(diǎn),求;
(2)當(dāng)時(shí),對(duì)任意,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù))
(Ⅰ)求直線的直角坐標(biāo)方程和曲線的普通方程;
(Ⅱ)若過(guò)且與直線垂直的直線與曲線相交于兩點(diǎn),,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高二某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見(jiàn)部分如圖所示.據(jù)此解答如下問(wèn)題:
(1)計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(2)根據(jù)莖葉圖和頻率分布直方圖估計(jì)這次測(cè)試的平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別過(guò)橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于與不同四點(diǎn),直線的斜率滿足.已知當(dāng)與軸重合時(shí),,.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)坐標(biāo)并求出此定值;若不存在,說(shuō)明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】試題分析:(1)當(dāng)與軸重合時(shí),垂直于軸,得,得,從而得橢圓的方程;(2)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點(diǎn)的軌跡是橢圓,從而求得定點(diǎn)和點(diǎn).
試題解析:當(dāng)與軸重合時(shí),, 即,所以垂直于軸,得,,, 得,橢圓的方程為.
焦點(diǎn)坐標(biāo)分別為, 當(dāng)直線或斜率不存在時(shí),點(diǎn)坐標(biāo)為或;
當(dāng)直線斜率存在時(shí),設(shè)斜率分別為, 設(shè)由, 得:
, 所以:,, 則:
. 同理:, 因?yàn)?/span>
, 所以, 即, 由題意知, 所以
, 設(shè),則,即,由當(dāng)直線或斜率不存在時(shí),點(diǎn)坐標(biāo)為或也滿足此方程,所以點(diǎn)在橢圓上.存在點(diǎn)和點(diǎn),使得為定值,定值為.
考點(diǎn):圓錐曲線的定義,性質(zhì),方程.
【方法點(diǎn)晴】本題是對(duì)圓錐曲線的綜合應(yīng)用進(jìn)行考查,第一問(wèn)通過(guò)兩個(gè)特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問(wèn)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個(gè)角度出發(fā),把坐標(biāo)化,求得點(diǎn)的軌跡方程是橢圓,從而求得存在兩定點(diǎn)和點(diǎn).
【題型】解答題
【結(jié)束】
21
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個(gè)零點(diǎn)為,記,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某實(shí)驗(yàn)室一天的溫度(單位:)隨時(shí)間(單位:)的變化近似滿足函數(shù)關(guān)系:.
(Ⅰ)求實(shí)驗(yàn)室這一天的最大溫差;
(Ⅱ)若要求實(shí)驗(yàn)室溫度不高于,則在哪段時(shí)間實(shí)驗(yàn)室需要降溫?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,解不等式;
(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若不等式對(duì)任意的正實(shí)數(shù)都成立,求實(shí)數(shù)的最大整數(shù);
(3)當(dāng)時(shí),若存在實(shí)數(shù)且,使得,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com