19.定義在區(qū)間[0,3π]上的函數(shù)y=sin2x的圖象與y=cosx的圖象的交點(diǎn)個(gè)數(shù)是7.

分析 畫出函數(shù)y=sin2x與y=cosx在區(qū)間[0,3π]上的圖象即可得到答案.

解答 解:畫出函數(shù)y=sin2x與y=cosx在區(qū)間[0,3π]上的圖象如下:
由圖可知,共7個(gè)交點(diǎn).
故答案為:7.

點(diǎn)評(píng) 本題考查正弦函數(shù)與余弦函數(shù)的圖象,作出函數(shù)y=sin2x與y=cosx在區(qū)間[0,3π]上的圖象是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.化簡(jiǎn):$\frac{{sin}^{2}(α-π)cos(π+α)sin(\frac{3π}{2}-α)}{tan(2π+α{)cos}^{3}(α-π)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.將函數(shù)f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}}$)圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),再向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度得到y(tǒng)=cosx的圖象,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(  )
A.[kπ-$\frac{2π}{3}$,kπ+$\frac{π}{3}}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}}$](k∈Z)
C.[4kπ-$\frac{7π}{3}$,kπ-$\frac{π}{3}}$](k∈Z)D.[4kπ-$\frac{π}{3}$,kπ+$\frac{5π}{3}}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知點(diǎn)M(1,0),A,B是橢圓$\frac{{x}^{2}}{4}$+y2=1上的動(dòng)點(diǎn),且$\overrightarrow{MA}•\overrightarrow{MB}$=0,則$\overrightarrow{MA}•\overrightarrow{BA}$的取值范圍是[$\frac{2}{3}$,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知一組數(shù)據(jù)4.7,4.8,5.1,5.4,5.5,則該組數(shù)據(jù)的方差是0.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在銳角三角形ABC中,若sinA=2sinBsinC,則tanAtanBtanC的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)(1+i)x=1+yi,其中x,y是實(shí)數(shù),則|x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,則平移后的圖象的對(duì)稱軸為(  )
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓C上一點(diǎn),直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N.求證:|AN|•|BM|為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案