A. | [kπ-$\frac{2π}{3}$,kπ+$\frac{π}{3}}$](k∈Z) | B. | [kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}}$](k∈Z) | ||
C. | [4kπ-$\frac{7π}{3}$,kπ-$\frac{π}{3}}$](k∈Z) | D. | [4kπ-$\frac{π}{3}$,kπ+$\frac{5π}{3}}$](k∈Z) |
分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得f(x)的解析式,再利用余弦函數(shù)的單調性,求得函數(shù)f(x)的單調遞增區(qū)間.
解答 解:將函數(shù)f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}}$)圖象上每一點的橫坐標伸長為原來的2倍(縱坐標不變),
可得y=cos($\frac{1}{2}$ωx+φ)圖象;再向右平移$\frac{π}{6}$個單位長度,得到 y=cos[$\frac{1}{2}$ω(x-$\frac{π}{6}$)+φ]=cos($\frac{1}{2}$ωx-$\frac{π}{12}$•ω+φ)的圖象,
而由已知可得,得到的是函數(shù)y=cosx的圖象,∴$\frac{ω}{2}$=1,∴ω=2;
再根據(jù)-$\frac{π}{12}$•2+φ=2kπ,k∈Z,∴φ=$\frac{π}{6}$,f(x)=cos(2x+$\frac{π}{6}$).
令2kπ-π≤2x+$\frac{π}{6}$≤2kπ,求得kπ-$\frac{7π}{12}$≤x≤kπ-$\frac{π}{12}}$,k∈Z,
則函數(shù)f(x)的單調遞增區(qū)間為[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}}$],(k∈Z),
故選:B.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的單調性,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | 14 | C. | 13 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,都有x2>1 | B. | ?x∈R,都有-1≤x≤1 | C. | ?x∈R,使得-1≤x≤1 | D. | ?x∈R,使得x2>1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com