【題目】如圖,四邊形是邊長為2的正方形,為的中點,以為折痕把折起,使點到達點的位置,且.
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)先由線面垂直的判定定理得到平面,進而可得平面平面;
(2)先取中點,連結,,證明平面平面,在平面內作于點,則平面. 以點為原點,為軸,為軸,如圖建立空間直角坐標系.分別求出兩平面的法向量,求向量夾角余弦值,即可求出結果.
(1)因為四邊形是正方形,所以折起后,且,
因為,所以是正三角形,所以.
又因為正方形中,為的中點,所以,所以,
所以,所以,又因為,所以平面.
又平面,所以平面平面.
(2)取中點,連結,,則,,
又,則平面.又平面,所以平面平面.
在平面內作于點,則平面.
以點為原點,為軸,為軸,如圖建立空間直角坐標系.
在中,,,.
∴,,故,,,
∴,.
設平面的一個法向量為,則由,得
,令,得,,
∴.
因為平面的法向量為,
則,
又二面角為銳二面角,∴二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2+bx(a為實常數(shù)).
(1)若a=﹣2,b=﹣3,求f(x)的單調區(qū)間;
(2)若b=0,且a>﹣2e2 , 求函數(shù)f(x)在[1,e]上的最小值及相應的x值;
(3)設b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓 + =1(a>b>0)的左焦點為F,右頂點為A,離心率為 .已知A是拋物線y2=2px(p>0)的焦點,F(xiàn)到拋物線的準線l的距離為 .
(Ⅰ)求橢圓的方程和拋物線的方程;
(Ⅱ)設l上兩點P,Q關于x軸對稱,直線AP與橢圓相交于點B(B異于A),直線BQ與x軸相交于點D.若△APD的面積為 ,求直線AP的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經過點,且圓心在直線:上.
(1)求圓的方程;
(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,是半圓的直徑,垂直于半圓所在的平面,點是圓周上不同于的任意一點,分別為的中點,則下列結論正確的是( )
A.B.平面平面
C.與所成的角為45°D.平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在ABC中,角A,B,C的對邊分別為a,b,c,若△ABC為銳角三角形,且滿足sinB(1+2cosC)=2sinAcosC+cosAsinC,則下列等式成立的是( )
A.a=2b
B.b=2a
C.A=2B
D.B=2A
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標伸長為原來的2倍(縱坐標不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線通過點,且在點處的切線垂直于軸.
(1)用分別表示和;
(2)當取得最小值時,求函數(shù)的單調區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com