【題目】設函數(shù)(其中).
(1)求函數(shù)的單調區(qū)間;
(2)當時,討論函數(shù)的零點個數(shù).
【答案】(1)答案見解析;(2)在定義域上只有唯一的零點.
【解析】試題分析:(1)由題意,求得,分類討論,即可求得函數(shù)的單調區(qū)間;
(2)由(1)值,再分和兩種討論,利用函數(shù)的圖象,進而確定函數(shù)的零點個數(shù).
試題解析:
(1)函數(shù)的定義域為,,
①當時,令,解得,所以的單調遞減區(qū)間是,單調遞增區(qū)間是,
②當時,令,解得或,
所以在和上單調遞增,在上單調遞減,
③當時,,在上單調遞增,
④當時,令,解得或,所以在和上單調遞增,在上單調遞減;
(2),
①當時,,又在上單調遞增,所以函數(shù)在上只有一個零點,
在區(qū)間中,因為,
取,于是,
又在上單調遞減,故在上也只有一個零點,
所以,函數(shù)在定義域上有兩個零點;
②當時,在單調遞增區(qū)間內,只有.
而在區(qū)間內,即在此區(qū)間內無零點.
所以,函數(shù)在定義域上只有唯一的零點.
科目:高中數(shù)學 來源: 題型:
【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為100的調查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應比例,則下列敘述中錯誤的是( )
A. 是否傾向選擇生育二胎與戶籍有關
B. 是否傾向選擇生育二胎與性別無關
C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同
D. 傾向選擇生育二的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.(為自然對數(shù)的底數(shù))
(1)設;
①若函數(shù)在處的切線過點,求的值;
②當時,若函數(shù)在上沒有零點,求的取值范圍.
(2)設函數(shù),且,求證:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓()的左焦點為,離心率為,過點且垂直于長軸的弦長為.
(1)求橢圓的標準方程;
(2)設點分別是橢圓的左、右頂點,若過點的直線與橢圓相交于不同兩點、.
①求證:;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,原點為,橢圓的動弦過焦點且不垂直于坐標軸,弦的中點為,過且垂直于線段的直線交直線于點.
(1)證明:三點共線;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來隨著素質教育的不斷推進,高考改革趨勢明顯.國家教育部先后出臺了有關高考的《學業(yè)水平考試》、《綜合素質評價》、《加分項目瘦身與自主招生》三個重磅文件,引起社會極大關注,有人說:男孩苦,女孩樂!為了了解某地區(qū)學生和包括老師,家長在內的社會人士對高考改革的看法,某媒體在該地區(qū)選擇了人,,就是否“贊同改革”進行調查,調查統(tǒng)計的結果如下表:
贊同 | 不贊同 | 無所謂 | |
在校學生 | |||
社會人士 |
已知在全體樣本中隨機抽取人,抽到持“不贊同”態(tài)度的人的概率為.
(1)現(xiàn)用分層抽樣的方法在所有參與調查的人中抽取人進行問卷訪談,文應該在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“不贊同”態(tài)度的人中,用分層抽樣方法抽取人,若從人中任抽人進一步深入調查,為更多了解學生的意愿,要求在校學生人數(shù)不少于社會人士人士,求恰好抽到兩名在校學生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,點在棱上,且.
(Ⅰ)求證:;
(Ⅱ)是否存在實數(shù),使得二面角的余弦值為?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)函數(shù)的圖象與的圖象無公共點,求實數(shù)的取值范圍;
(Ⅱ)是否存在實數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出整數(shù)的最大值;若不存在,請說理由.
(參考數(shù)據(jù):,,).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018山西太原市高三3月模擬】已知橢圓的左、右頂點分別為,右焦點為,點在橢圓上.
(I)求橢圓方程;
(II)若直線與橢圓交于兩點,已知直線與相交于點,證明:點在定直線上,并求出定直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com