科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖南卷數(shù)學(xué)理科 題型:044
已知函數(shù)f(x)=eax-x,其中a≠0.
(1)若對(duì)一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函數(shù)f(x)的圖像上取定兩點(diǎn)A(x1,f(x1)),B(x2,f(x2))(x1<x2),記直線AB的斜率為K,問(wèn):是否存在x0∈(x1,x2),使>k成立?若存在,求x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖南卷數(shù)學(xué)理科 題型:044
在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=-2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=-4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖南卷數(shù)學(xué)理科 題型:044
某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的A,B,C三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).
(1)設(shè)生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時(shí)間;
(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開(kāi)工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖南卷數(shù)學(xué)理科 題型:044
已知數(shù)列{an}的各項(xiàng)均為正數(shù),記A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,……
(1)若a1=1,a2=5,且對(duì)任意n∈N﹡,三個(gè)數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{an}是公比為q的等比數(shù)列的充分必要條件是:對(duì)任意n∈N*,三個(gè)數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列.
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖南卷數(shù)學(xué)理科 題型:044
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點(diǎn).
(Ⅰ)證明:CD⊥平面PAE;
(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖南卷數(shù)學(xué)理科 題型:044
某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
已知這100位顧客中的一次購(gòu)物量超過(guò)8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(Ⅱ)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過(guò)2.5分鐘的概率.
(注:將頻率視為概率)
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試福建卷數(shù)學(xué)文科 題型:044
已知函數(shù)f(x)=axsinx-(a∈R),且在[0,]上的最大值為
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,π)內(nèi)的零點(diǎn)個(gè)數(shù),并加以證明.
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試福建卷數(shù)學(xué)文科 題型:044
如圖,等邊三角形OAB的邊長(zhǎng)為8,且其三個(gè)頂點(diǎn)均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線y=-1相較于點(diǎn)Q.證明以PQ為直徑的圓恒過(guò)y軸上某定點(diǎn).
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試福建卷數(shù)學(xué)文科 題型:044
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-sin2(-25°)cos255°
(Ⅰ)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù)
(Ⅱ)根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣位三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目: 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試福建卷數(shù)學(xué)文科 題型:044
如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M為棱DD1上的一點(diǎn).
(1)求三棱錐A-MCC1的體積;
(2)當(dāng)A1M+MC取得最小值時(shí),求證:B1M⊥平面MAC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com