相關(guān)習(xí)題
 0  159031  159039  159045  159049  159055  159057  159061  159067  159069  159075  159081  159085  159087  159091  159097  159099  159105  159109  159111  159115  159117  159121  159123  159125  159126  159127  159129  159130  159131  159133  159135  159139  159141  159145  159147  159151  159157  159159  159165  159169  159171  159175  159181  159187  159189  159195  159199  159201  159207  159211  159217  159225  266669 

科目: 來源:不詳 題型:單選題

下列命題為真命題的是(  )
A.f(x)在x=x0處存在極限,則f(x)在x=x0連續(xù)
B.f(x)在x=x0處無定義,則f(x)在x=x0無極限
C.f(x)在x=x0處連續(xù),則f(x)在x=x0存在極限
D.f(x)在x=x0處連續(xù),則f(x)在x=x0可導(dǎo)

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(x)=
ax+b
x2+1
在點(diǎn)M(1,f(1))
處的切線方程為x-y-1=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)=lnx,證明:g(x)≥f(x)對(duì)x∈[1,+∞)恒成立.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知f(x)=-x2+a(5-a)x+b.
(1)若不等式f(x)>0的解集為(-1,7)時(shí),求實(shí)數(shù)a,b的值;
(2)當(dāng)a∈[-1,2)時(shí),f(3)<0恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

函數(shù)lnx≤xem2-m-1對(duì)任意的正實(shí)數(shù)x恒成立,則m的取值范圍是( 。
A.(-∞,0]∪[1,+∞)B.[0,1]C.[e,2e]D.(-∞,e)∪[2e,+∞)

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知f(x)=x2+ax+3
(1)當(dāng)x∈R時(shí),f(x)≥a恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈(-∞,1)時(shí),f(x)≥a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

函數(shù)f(x)=2x+2-x的圖象關(guān)于( 。⿲(duì)稱.
A.坐標(biāo)原點(diǎn)B.直線y=xC.x軸D.y軸

查看答案和解析>>

科目: 來源:不詳 題型:單選題

若(m+1)x2-(m-1)x+3(m-1)<0對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m>1B.m<-1
C.m<-
13
11
D.m>1或m<-
13
11

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).
(Ⅰ)求f(x)的最小值h(t);
(Ⅱ)若h(t)<-2t+m對(duì)t∈(0,2)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ax+3,g(x)=(6+a)•2x-1
(Ⅰ)若f(1)=f(3),求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,判斷函數(shù)F(x)=
2
1+g(x)
的單調(diào)性,并給出證明;
(Ⅲ)當(dāng)x∈[-2,2]時(shí),f(x)≥a(a∉(-4,4))恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)f(x)是R上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x.
(Ⅰ)求f(π)的值;
(Ⅱ)作出當(dāng)-4≤x≤4時(shí)函數(shù)f(x)的圖象,并求它與x軸所圍成圖形的面積;
(Ⅲ)直接寫出函數(shù)f(x)在R上的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案