相關習題
 0  200322  200330  200336  200340  200346  200348  200352  200358  200360  200366  200372  200376  200378  200382  200388  200390  200396  200400  200402  200406  200408  200412  200414  200416  200417  200418  200420  200421  200422  200424  200426  200430  200432  200436  200438  200442  200448  200450  200456  200460  200462  200466  200472  200478  200480  200486  200490  200492  200498  200502  200508  200516  266669 

科目: 來源: 題型:

在△ABC中,若a2+b2+c2+1=2(a+bc),且13sinA=12,則它的三邊長分別是
 

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)求出f(x)的解析式;
(2)現(xiàn)已畫出函數(shù)f(x)在y軸左側的圖象,如圖所示,請補出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間和值域.

查看答案和解析>>

科目: 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:
①值域為(-1,1),且當x>0時,-1<f(x)<0;
②對于定義域內任意的實數(shù)x、y,均滿足:f(x+y)=
f(x)+f(y)
1+f(x)f(y)

(1)試求f(0)的值;
(2)已知函數(shù)g(x)的定義域為(-1,1),且滿足條件g[f(x)]=x對任意x∈R恒成立,求g(
1
2
)+g(-
1
2
);
(3)證明:g(
1
5
)+g(
1
11
)+…+g(
1
n2+3n+1
)>g(
1
2
).

查看答案和解析>>

科目: 來源: 題型:

為了了解某市創(chuàng)建文明城市過程中,學生對創(chuàng)建工作的滿意情況,相關部門對某中學的
100名學生進行調查,得到如下的統(tǒng)計表:
 滿意不滿意合計
男生50  
女生 15 
合計  100
已知在全部100名學生中隨機抽取1人對創(chuàng)建工作表示滿意的概率為
4
5

(1)利用概率估計統(tǒng)計表中的空白處相應的數(shù)據(jù),并請?zhí)钤诮y(tǒng)計表中;
(2)能否有99.5%的把握認為該中學的學生對創(chuàng)建工作的滿意情況與性別有關?
附:
P(K2>k)0.010.050.2250.010.0050.001
k2.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=|a2x2-1|+ax(a∈R,且a≠0).
(Ⅰ)當a<0時,若函數(shù)y=f(x)-c恰有x1,x2,x3,x4四個零點,求x1+x2+x3+x4的值;
(Ⅱ)若不等式f(x)≥|x|對一切x∈[b,+∞)都成立,求a2b2+(b-
1
2
2的最小值.

查看答案和解析>>

科目: 來源: 題型:

在數(shù)列{an}中,a1=6,且an-an-1=
an-1
n
+n+1
(n∈N*,n≥2),數(shù)列{
1
an
}的前n項和為sn,則S10=
 

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,設a,b,c分別為內角A,B,C的對邊,C=2A,cosA=
3
4
,cos3A=-
9
16
,
BA
BC
=
27
2
,則邊b的長為
 

查看答案和解析>>

科目: 來源: 題型:

已知a,b為正實數(shù),直線x+y+a=0與圓(x-b)2+(y-1)2=2相切,則
a2
b+1
的取值范圍是
 

查看答案和解析>>

科目: 來源: 題型:

如圖1所示,點D是等邊三角形ABC的邊BC上一點,連結AD作∠ADE=60°,交∠ABC的外角平分線CE于E
(1)求證:AD=DE;
(2)當點D運動到CB的延長線上是,如圖2所示,(1)中的結論是否仍然成立?若成立,請給出證明.若不成立,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,過橢圓頂點(a,0),(0,b)的直線與圓x2+y2=
2
3
相切.
(1)求橢圓C的方程;
(2)若過點 M(2,0)的直線與橢圓C相交于兩點 A,B,設 P為橢圓上一點,且滿足
OA
+
OB
=t
OP
( O為坐標原點),當|
PA
-
PB
|<
2
5
3
時,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案