相關(guān)習(xí)題
 0  228868  228876  228882  228886  228892  228894  228898  228904  228906  228912  228918  228922  228924  228928  228934  228936  228942  228946  228948  228952  228954  228958  228960  228962  228963  228964  228966  228967  228968  228970  228972  228976  228978  228982  228984  228988  228994  228996  229002  229006  229008  229012  229018  229024  229026  229032  229036  229038  229044  229048  229054  229062  266669 

科目: 來(lái)源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的3個(gè)頂點(diǎn),直線l:y=-x+3與橢圓E有且只有一個(gè)公共點(diǎn)T.
(Ⅰ)求橢圓E的方程及點(diǎn)T的坐標(biāo);
(Ⅱ)設(shè)O是坐標(biāo)原點(diǎn),直線l′平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P.證明:存在常數(shù)λ,使得|PT|2=λ|PA|•|PB|,并求λ的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*
(Ⅰ)若2a2,a3,a2+2成等差數(shù)列,求an的通項(xiàng)公式;
(Ⅱ)設(shè)雙曲線x2-$\frac{{y}^{2}}{{a}_{n}^{2}}$=1的離心率為en,且e2=$\frac{5}{3}$,證明:e1+e2+???+en>$\frac{{4}^{n}-{3}^{n}}{{3}^{n-1}}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.
(Ⅰ)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說(shuō)明理由;
(Ⅱ)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=ax2-a-lnx,g(x)=$\frac{1}{x}$-$\frac{e}{{e}^{x}}$,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)x>1時(shí),g(x)>0;
(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,拋物線E:x2=2y的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
(I)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線l與C交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M.
(i)求證:點(diǎn)M在定直線上;
(ii)直線l與y軸交于點(diǎn)G,記△PFG的面積為S1,△PDM的面積為S2,求$\frac{{S}_{1}}{{S}_{2}}$的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$,a∈R.
(I)討論f(x)的單調(diào)性;
(II)當(dāng)a=1時(shí),證明f(x)>f′(x)+$\frac{3}{2}$對(duì)于任意的x∈[1,2]成立.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍;
(3)求證:a2-3b>0是f(x)有三個(gè)不同零點(diǎn)的必要而不充分條件.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.某網(wǎng)店統(tǒng)計(jì)了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店
①第一天售出但第二天未售出的商品有16種;
②這三天售出的商品最少有29種.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.在△ABC中,∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,則$\frac{c}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案