相關(guān)習題
 0  229021  229029  229035  229039  229045  229047  229051  229057  229059  229065  229071  229075  229077  229081  229087  229089  229095  229099  229101  229105  229107  229111  229113  229115  229116  229117  229119  229120  229121  229123  229125  229129  229131  229135  229137  229141  229147  229149  229155  229159  229161  229165  229171  229177  229179  229185  229189  229191  229197  229201  229207  229215  266669 

科目: 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,若動點A在橢圓C上,動點B在直線y=$\frac{ab}{c}=\frac{{\sqrt{6}}}{2}$上.(c為橢圓的半焦距)
(Ⅰ)求橢圓C的方程;
(Ⅱ)若OA⊥OB(O為坐標原點),試探究點O到直線AB的距離是否為定值;若是定值,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知a、b、c都是正數(shù),求證:
(I)$\frac{^{2}}{a}$$+\frac{{c}^{2}}$$+\frac{{a}^{2}}{c}$≥a十b+c;
(2)2($\frac{a+b}{2}$-$\sqrt{ab}$≤3($\frac{a+b+c}{3}$-$\root{3}{abc}$)

查看答案和解析>>

科目: 來源: 題型:解答題

17.設(shè)點P是圓x2+y2=4上的任一點,定點D的坐標為(8,0),若點M滿足$\overrightarrow{PM}$=2$\overrightarrow{MD}$,當點P在圓上運動時,求點M的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知點M(-3,0),N(3,0),B(2,0),動圓C與直線MN切于點B,過M,N與圓C相切的兩直線交于點P,則P的軌跡方程為( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<-2)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>2)C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1(x>0)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>0)

查看答案和解析>>

科目: 來源: 題型:解答題

15.設(shè)a,b,c為正數(shù),且a2+b2+c2=1,求證:$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$+$\frac{1}{{c}^{2}}$-$\frac{2({a}^{3}+^{3}+{c}^{3})}{abc}$≥3.

查看答案和解析>>

科目: 來源: 題型:解答題

14.某著名歌星在某地舉辦一次歌友會,有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎活動,第一輪抽獎從這1000張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎?wù)擢毩⒉僮靼粹o,電腦隨機產(chǎn)生兩個實數(shù)x,y(x,y∈[0,4]),若滿足y≥$\frac{8}{5}x$,電腦顯示“中獎”,則抽獎?wù)咴俅潍@得特等獎獎金;否則電腦顯示“謝謝”,則不獲得特等獎獎金.
(Ⅰ)已知小明在第一輪抽獎中被抽中,求小明在第二輪抽獎中獲獎的概率;
(Ⅱ)設(shè)特等獎獎金為a元,小李是此次活動的顧客,求小李參加此次活動獲益的期望;若該歌友會組織者在此次活動中獲益的期望值是至少獲得70000元,求a的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.求證:$\frac{1}{2}$<$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n>1,n∈N*

查看答案和解析>>

科目: 來源: 題型:解答題

12.設(shè)a,b,c是正實數(shù),且a2+b2+c2+abc=4,證明:a+b+c≤3.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知a>0,b>0,且a+b=1.
(Ⅰ)求ab的最大值;
(Ⅱ)求證:$({a+\frac{1}{a}})({b+\frac{1}})≥\frac{25}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

10.2011年,國際數(shù)學(xué)協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源是中國古代數(shù)學(xué)家祖沖之的圓周率.為慶祝該節(jié)日,某校舉辦的數(shù)學(xué)嘉年華活動中,設(shè)計了如下有獎闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得5個、10個、20個學(xué)豆的獎勵.游戲還規(guī)定,當選手闖過一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲能闖過第一關(guān)、第二關(guān)、第三關(guān)的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選手選擇繼續(xù)闖關(guān)的概率均為$\frac{1}{2}$,且各關(guān)之間闖關(guān)成功與否互不影響.
(Ⅰ)求選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率;
(Ⅱ)設(shè)該選手所得學(xué)豆總數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習冊答案