相關(guān)習(xí)題
 0  229150  229158  229164  229168  229174  229176  229180  229186  229188  229194  229200  229204  229206  229210  229216  229218  229224  229228  229230  229234  229236  229240  229242  229244  229245  229246  229248  229249  229250  229252  229254  229258  229260  229264  229266  229270  229276  229278  229284  229288  229290  229294  229300  229306  229308  229314  229318  229320  229326  229330  229336  229344  266669 

科目: 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,且經(jīng)過點$(-1,\frac{3}{2})$.
(1)求橢圓C的方程;
(2)直線l:y=x+m與橢圓C相切,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l,求四邊形F1MNF2的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x}-2,x≥0}\end{array}\right.$,則f(f(-2))=14,函數(shù)f(x)的零點的個數(shù)為1.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>c)的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,O為坐標原點,$\overrightarrow{OA}$•$\overrightarrow{O{F}_{2}}$=|$\overrightarrow{O{F}_{2}}$|2,若橢圓的離心率等于$\frac{\sqrt{2}}{2}$,則直線OA的方程是( 。
A.y=$\frac{1}{2}x$B.y=$\frac{\sqrt{2}}{2}$xC.y=$\frac{\sqrt{3}}{2}$xD.y=x

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{3}}}{3}$,點M在橢圓上,且滿足MF2⊥x軸,$|{M{F_1}}|=\frac{{4\sqrt{3}}}{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線y=kx+2交橢圓于A,B兩點,求△ABO(O為坐標原點)面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,且過點(1,$\frac{\sqrt{6}}{3}$).
(1)求橢圓C的方程;
(2)設(shè)與圓O:x2+y2=$\frac{3}{4}$相切的直線l交橢圓C于A,B兩點,求△OAB面積的最大值,及取得最大值時直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知F1、F2分別是橢圓C:$\frac{x^2}{4}$+y2=1的左、右焦點.
(1)若P是第一象限內(nèi)該橢圓上的一點,$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=-$\frac{5}{4}$,求點P的坐標;
(2)設(shè)過定點M(0,2)的直線l與橢圓交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1,F(xiàn)2,若|F1F2|2=λ|AF1|•|BF2|(0<λ<4),則離心率e的取值范圍是$(0,\frac{1}{2})$.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知{an}為等差數(shù)列,公差為1,且a5是a3與a11的等比中項,Sn是{an}的前n項和,則S12的值為54.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.從1,2,3,4,5,6中任取三個數(shù),則這三個數(shù)構(gòu)成一個等差數(shù)列的概率為(  )
A.$\frac{3}{10}$B.$\frac{3}{7}$C.$\frac{7}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=ln(x+$\sqrt{{x}^{2}+1}$)+3,若f(a)=10,則f(-a)=( 。
A.13B.-7C.7D.-4

查看答案和解析>>

同步練習(xí)冊答案